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ABSTRACT

I obtain and examine the implications of one-dimensional analytic solutions for

return-current losses on an initially power-law distribution of energetic electrons with

a sharp low-energy cutoff in flare plasma with classical (collisional) resistivity. These

solutions show, for example, that return-current losses are not sensitive to plasma den-

sity, but are sensitive to plasma temperature and the low-energy cutoff of the injected

nonthermal electron distribution. A characteristic distance from the electron injection

site, xrc, is derived. At distances less than xrc the electron flux density is not reduced

by return-current losses, but plasma heating can be substantial in this region, in the up-

per, coronal part of the flare loop. Before the electrons reach the collisional thick-target

region of the flare loop, an injected power-law electron distribution with a low-energy

cutoff maintains that structure, but with a flat energy distribution below the cutoff

energy, which is now determined by the total potential drop experienced by the elec-

trons. Modifications due to the presence of collisional losses are discussed. I compare

these results with earlier analytical results and with more recent numerical simulations.

Emslie’s conjecture that there is a maximum integrated X-ray source brightness on the

order of 10−15 photons cm−2 s−1 cm−2 is examined. I find that this is not actually

a maximum brightness and its value is parameter dependent, but it is nevertheless a

valuable benchmark for identifying return-current losses in hard X-ray spectra. I discuss

an observational approach to identifying return-current losses in flare data, including

identification of a return-current “bump” in X-ray light curves at low photon energies.

Subject headings: acceleration of particles — plasmas — Sun: flares — Sun: X-rays,

gamma rays

1. Introduction

Solar flares, the most energetic explosive events in the solar system, provide a nearby lab-

oratory for developing our understanding of the physics of evolving, magnetized cosmic plasma.
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Because of their proximity to Earth, they and related coronal mass ejections (CMEs) have an in-

creasingly significant impact on the power grid, space-based communications and other equipment,

and manned space programs. Therefore, understanding the phenomenology and physics of solar

flares is of considerable academic and practical interest.

Accelerated electrons play an important role in the energetics of solar flares. Understanding

the process or processes that accelerate these electrons to high, suprathermal energies depends

in part on understanding the evolution of the electrons between the acceleration region and the

regions where they are observed through their hard X-ray or radio emission (see Holman et al.

2011, for a review). Hard X-ray emission is usually observed from the chromosphere and lower

transition region, where the plasma density in the solar atmosphere is highest. This is where they

interact most frequent with ambient ions, giving the highest flux of bremsstrahlung X-rays, and

where they lose through collisions their suprathermal energy and collisionally heat the ambient

plasma. Thus the region from which the X-ray emission is greatest is a thick target. The primary

particle acceleration region, however, is understood to be in the corona, above the hot soft X-ray

and extreme-ultraviolet loops observed in flares. Radio emission is observed from the corona, but

its location and properties strongly depend on the magnetic field strength and structure. In some

flares hard X-ray emission is also observed from the corona, possibly even from the acceleration

region itself, but the proper interpretation of this coronal emission remains elusive.

Theoretical arguments and observational results indicate that return-current energy losses can

have a significant impact on electrons accelerated in flares. Recognizing that the high current in

the beam of energetic electrons required to explain observed X-ray fluxes would be pinched off by

its associated magnetic field, Hoyng et al. (1976) argued that the current must be neutralized by a

return-current in the background plasma. Flare particle acceleration mechanisms are not expected

to produce co-streaming ions to neutralize the beam of accelerated electrons (e.g., Miller et al. 1997).

Also, Ramaty High Energy Spectrosocpic Imager (RHESSI) observations have indicated that the

γ-ray emission from ions originates from different locations than that from electrons (Hurford et

al. 2003, 2006). For the electron beam to successfully propagate away from the acceleration region

and for charge conservation to be maintained, a co-spatial return current is required.

The return current is driven by an electric field induced in the plasma by the streaming,

energetic electrons in the beam (van den Oord 1990, and references therein). This electric field,

in addition to driving the return current, also extracts energy from the beam electrons. The

return current collisionally heats the plasma through Joule heating. As the beam electrons lose

energy, the current they carry, the return current, and the return-current electric field decrease

with propagation distance. To understand the impact of return-current losses on flare hard X-ray

emission, it is important to determine how these losses change the electron distribution function

with distance from the acceleration region.

A steady-state, one-dimensional (1-D, all electron velocities have zero pitch angle and, there-

fore, are directed along the magnetic field) model for the beam/return-current system was developed
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by Knight & Sturrock (1977). They apply their model to a discussion of the additional heating of

the flare plasma by the return current. Emslie (1980) extended the model to include a non-zero

electron pitch angle and collisional losses. He computed the evolution of electron energy and pitch

angle with depth (column density) and deduced the existence of an upper limit to the flare X-ray

emission. D’Iakonov & Somov (1988) estimated the hard X-ray spectrum and polarization of the

bremsstrahlung radiation from a hot, thermal tail of electrons escaping ahead of a thermal conduc-

tion front. Return-current losses were included in their calculations. Litvinenko & Somov (1991)

repeated these calculations for a power-law distribution of electrons. The impact of the shape of

the low-energy cutoff to the energy distribution of the injected electrons on both collisional and

return-current heating of the flare plasma has been studied by Brown & McClymont (1987).

Numerical simulations of electron propagation with return-current losses and computations of

corresponding hard X-ray spectra have been performed by Zharkova & Gordovskyy (2005, 2006).

For an injected power-law electron energy distribution with low- and high-energy cutoffs, they com-

puted the steady-state electron distribution along the flare loop and the resulting bremsstrahlung

X-ray spectrum for several injected power-law indices and electron energy flux densities. These

computations included the response of the flare plasma to the electron beam injection. Subsequent

simulations (Siversky & Zharkova 2009; Zharkova et al. 2010) have included time-dependence of the

particle injection (see also Karlicky et al. 1990), electron pitch-angle anisotropy, and magnetic field

convergence. Papers addressing plasma instabilities in the electron beam/return-current system

include Emslie (1981), Rowland & Vlahos (1985), Karlický et al. (2008), Lee et al. (2008), Karlický

(2009), Karlický & Kašparová (2009), and Zharkova & Siversky (2011).

Observational evidence exists indicating that in some cases return-current losses do have a

significant impact on the hard X-ray emission from flares: (1) Sui et al. (2007) found that the

spectral break energy (and, therefore, the corresponding electron distribution cutoff energy), was

correlated with the X-ray flux for a sample of flares having relatively flat, low-energy spectra. This

correlation is expected if return-current losses are responsible for the spectral break (see Sections

2.2 and 3.3 of this paper). (2) Alexander & Daou (2007) have found that the integrated hard

X-ray flux density (above 20 keV) does not monotonically increase with flare size, but levels off

to a maximum value as the flare size becomes large. This maximum value agrees with the upper

limit deduced by Emslie (1980). (3) Battaglia & Benz (2008) found that for two flares with well-

observed coronal X-ray emission, the difference between the spectral indices of the coronal and

footpoint spectra was greater than the largest difference expected in a simple thick-target model.

They argued that return-current losses were most likely responsible for this large difference between

the spectral indices.

Developing the ability to recognize the impact of return-current losses on flare hard X-ray

data is a crucial step to understanding electron acceleration and propagation in flares. The energy

spectrum of electrons injected from the acceleration region cannot be confidently established with-

out first understanding when and how return-current losses affect the observed X-ray spectrum.

Identifying return-current losses in turn provides information about the induced potential drop in
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flare loops and its evolution and, consequently, about the evolution of the plasma in the loops.

This plasma evolution is coupled to the direct collisional and indirect return-current heating of the

plasma by the accelerated electrons. Hence, return-current losses contribute to the flare plasma

dynamics.

Although considerable work has been done on the origin of the return current and its con-

sequences, it is difficult to obtain from the existing literature a clear understanding of how to

recognize and interpret return-current losses in flare X-ray data. The purpose of this paper is to

derive relatively simple analytical and semi-analytical results for return-current losses, with physical

understanding and application to flare observations as primary goals, although no direct applica-

tion to flare X-ray data is included in this paper. Numerical results are obtained throughout for

estimating the impact of the losses. The analytical results obtained here are also useful as limiting

cases for testing numerical codes.

This paper focuses on a one-dimensional (1-D), steady-state model, where 1-D means that all

electron velocities are directed along the loop magnetic field. These same assumptions are usually

included in the thick-target model (Brown 1971). The model is the same as that of Knight & Stur-

rock (1977), but with a minor but generally important extension to approximate the thermalization

of electrons as their energies approach the mean energy of electrons in the ambient thermal plasma.

Except for this thermalization, collisional losses are not incorporated into the model. This model is

adequate for understanding the primary qualitative effects of return-current losses and, as I show in

Section 3, for understanding the qualitative (and, to some extent, quantitative) results of Zharkova

& Gordovskyy (2006). Since the model is 1-D, it does not include the evolution of electron pitch

angles and the re-acceleration of reflected electrons (e.g., Karlicky 1993). It can accommodate a

non-classical value of the plasma resistivity, but not significant physical changes in the particle

distributions and their evolution due to plasma kinetic effects, such as acceleration of electrons out

of the thermal plasma as the return-current electric field approaches and exceeds the Dreicer field

(e.g., Karlický et al. 2004).

In Section 2 the model is described and the electron flux density distribution function and

all related physical quantities are derived. Formalism for generalizing these results to the more

realistic case of plasma resistivity varying with distance is derived. Heating of the plasma by

the beam/return-current system (excluding collisional heating by the higher-energy primary beam

electrons) is derived and discussed. Return-current and collisional energy losses are compared. The

impact of return-current losses on X-ray source brightness is discussed, and I introduce a model in

which collisional losses dominate in the thick-target region and return-current losses dominate above

this region. An approximation to the X-ray brightness spectrum from this model is computed. I

also examine the maximum integrated X-ray brightness deduced by Emslie (1980) and find that

this is not a maximum value, but rather is characteristic of the integrated brightness when return-

current losses begin to degrade the flux density of the electron beam. Finally, a much higher limit

on the maximum integrated X-ray brightness is identified and discussed.
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An analysis and interpretation of the numerical results obtained by Zharkova & Gordovskyy

(2006) is presented in Section 3. I analyze and interpret results for the return-current electric field,

X-ray spectra, and X-ray spectral indices.

The evolution of the return-current low-energy cutoff (potential drop) and X-ray spectral index

with X-ray brightness, and of brightness with injected electron flux density, are derived from the

model in Section 4. The results are examined and a new feature, the return-current “bump”, is

identified.

The model results are summarized in Section 5 and, based on the results obtained here, an

approach to identifying and interpreting return-current losses in flare X-ray data to deduce physical

information is discussed.

2. Steady-State 1-D Model

The steady-state, one-dimensional model is based on the following assumptions:

1. All electron velocities are parallel (or all are anti-parallel) to the ambient magnetic field, as in

the collisional thick-target model of Brown (1971). The velocities of the accelerated electrons

are parallel to the direction of the return-current electric field.

2. The magnitude of the return-current density, Jrc statampere cm−2 in cgs units, has had time

to reach its steady-state value, and this is equal to the magnitude of the current density J of

the accelerated electrons. The time required to reach the steady state is on the order of the

thermal electron-ion collision time (van den Oord 1990) which, from Huba (2009), is

τe =
3

4
(
me

2π
)1/2 (kT )3/2

nλe4
=

4.35× 10−2T
3/2
7

n10(λ/20)
s. (1)

Here me and e are the electron mass and charge, respectively, and k is Boltzmann’s constant.

T and n are the plasma electron temperature (K) and density (cm−3), respectively, and λ

is the Coulomb logarithm. Notation such as T7 is shorthand for (T/107), meaning that the

temperature is normalized to the value 107 K. The Coulomb logarithm is approximately (with

∼10% uncertainty)

λ = 8.96− ln(Zn1/2T−3/2), T < 1.16× 105Z2 (2a)

λ = 14.6 + ln(n−1/2T ), T > 1.16× 105Z2. (2b)

The atomic number Z in the solar atmosphere is approximately the relative-ion-abundance-

weighted mean 1.1, and the weighted mean Z2 is approximately 1.4.

In the flare corona, taking T to range from 1 MK to 50 MK and and n from 1× 109 cm−3 to

1 × 1012 cm−3, λ ranges from 15 to 22 and τe ranges from 19 µs to 4.4 s. Below the corona,
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with T ranging from 104 K to 1 MK and and n from 1×109 cm−3 to 1×1014 cm−3, λ ranges

from 7 to 18 and τe ranges from 42 ns to 15 ms. The steady-state assumption will be violated

if the accelerated electron distribution varies on timescales on the order of τe or less.

3. The resistivity of the plasma, η, is given by the classical, collisional Spitzer result

η =
me

1.96ne2τe
= 0.680(2πmee

4)1/2λ(kT )−3/2 = 4.63× 10−18

(

λ

20

)

T
−3/2
7 s, (3)

where me and e are the electron mass and charge, respectively (Huba 2009). Plasma insta-

bilities may give a plasma resistivity exceeding this value and/or more complex behavior in

the beam-return-current system, especially when the drift speed of the return current exceeds

the ion sound speed. Since the purpose of this paper is to better understand the impact

of classical return-current losses on flare observational data and to compare derived results

with numerical simulations of return-current losses under classical conditions, I will assume

that the plasma resistivity is given by Eq. 3, even when instability is likely to affect the

beam-return-current system.

With these assumptions, the strength of the electric field driving the return current, Erc

statvolt cm−1, is given by Ohm’s law:

Erc = ηJrc = ηJ. (4)

4. The electrons are continuously injected from the acceleration region, taken to be located at

position x = 0, and have a power-law flux density distribution in electron energy, E keV,

with a low-energy cutoff, Ec keV:

F (E, x = 0) =

{

(δ − 1)Eδ−1
c Fe0E

−δ electrons s−1 cm−2 keV−1 E ≥ Ec

0 E < Ec.
(5)

Here δ is the power-law index of the electron distribution and Fe0 (electrons s−1 cm−2)

=
∫

∞

0 F (E, 0)dE is the total flux density of accelerated electrons. The power-law index δ is

greater than 2 so that the total energy flux density carried by the accelerated electrons is not

infinite (see Holman et al. 2011). In this section I assume that any high-energy cutoff to this

distribution function is high enough that it does not significantly affect the value of Fe0 and

related quantities. A high-energy cutoff is considered in Sections 3.2 and 3.3.

5. Only return-current losses are considered. In particular, collisional losses are not included.

This is done to isolate effects specifically due to return-current losses and to allow relatively

simple, analytical results to be obtained. The impact of collisional losses on return-current

losses is discussed in Section 2.5. Modifications to the electron distribution function by other

likely processes, such as electron pitch-angle scattering and magnetic mirroring, are also not

included.
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6. When an accelerated electron’s energy is reduced by the return-current losses to a value Eth, it

is assumed to be lost from the electron distribution. When the electrons lose sufficient energy,

they will be thermalized into the ambient plasma. This will occur at energies somewhat

greater than kT , where k is Boltzmann’s constant and T is the temperature of the ambient

plasma. I take this to be the discrete energy Eth = βkT , where β is a constant greater than

but on the order of 1. Emslie (2003) found that thermalization starts becoming significant

when E < 5kT , giving 1 < β < 5. The effective value of β is most likely ∼ 2 − 3. I will

assume that above Eth the electron flux density is conserved (see Section 2.2).

2.1. Return-Current Electric Field Electron Deceleration

The energy lost by the accelerated electrons in the return-current electric field Erc as a function

of distance x from the point of injection at x = 0 is determined by the simple equation

dE

dx
= −eErc(x). (6)

The solution to this equation is

E = E0 − e

∫ x

0
Erc(x)dx = E0 − V (x). (7)

Here E0 is the initial value of the electron energy at x = 0 and V (x) is the potential drop (in kV

when the electron energies are given in keV) from x = 0 to x. Note that the energy lost at position

x is the same for all electrons and equal to the value of the potential drop. However, the fractional

energy lost, V (x)/E0, is greater for lower energy electrons than for higher energy electrons. V (x)

is an increasing function of x.

Since the direction of current is defined by the collective motion of positive charge carriers, the

current carried by the accelerated electrons is in the −x direction while the return current and the

return-current electric field are in the +x direction. The current density carried by the accelerated

electrons is J(x) = −e
∫

∞

0 F (E, x)dE. I will usually drop the sign and refer only to the magnitude

of the current, as in Equation 4.

Ohm’s law (Equation 4) and Equation 3 can now be used to compute the magnitude of Erc at

x = 0:

Erc0 ≡ Erc(0) = ηJ(0) = ηeFe0 = 2.22× 10−27

(

λ

20

)

T
−3/2
7 Fe0 statvolt cm−1

= 6.67× 10−28

(

λ

20

)

T
−3/2
7 Fe0 kV cm−1. (8)

Note that this result depends only weakly (through λ) on the density of the thermal plasma.

At this point it is useful to have an estimate of the magnitude of Fe0. Application of the

collisional thick-target model to the observed hard X-ray emission from flares gives electron fluxes
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ranging from 1032 electrons s−1 to 1037 electrons s−1 (cf. Holman et al. 2003; Warmuth et al. 2009).

Reliable measurements of hard X-ray footpoint sizes have been difficult to obtain, but estimates

tend to fall in the 1′′– 10′′range (cf. Dennis & Pernak 2009). Taking a typical footpoint area to be

1017 cm2, Fe0 is estimated to range from 1015 electrons s−1 cm−2 to 1020 electrons s−1 cm−2. If

the accelerated electron current is filamented so that only a fraction of the observed footpoint area

is emitting, this could be a lower limit on the range of electron flux density values.

We see from Equation 8 that if the initial return-current electric field operates on an electron

over a distance of 109 cm with T = 10 MK, an electron flux density ∼ 1019 electrons s−1 cm−2 or

greater is required to diminish the electron’s energy by 10 keV. This reduces to ∼ 1018 electrons

s−1 cm−2 or greater if T = 2 MK.

An upper limit on Fe0 can be estimated from the expectation that the number density of

nonthermal electrons, Nb, should be much less than the number density of electrons in the am-

bient plasma, n. The number density of nonthermal electrons near the injection point, Nb0, is
∫

∞

Ec
[F (E, 0)/v]dE. Using Equation 5, this gives

Nb0 =

(

δ − 1

δ − 0.5

)(

me

2Ec

)1/2

Fe0 = 1.2× 108

(

δ − 1

δ − 0.5

)(

20

Ec

)1/2 (

Fe0

1018

)

cm−3. (9)

A determination of the coronal plasma density in the impulsive phase of flares has been difficult

to obtain. Flare coronal plasma densities as high as 1013 cm−3 have been inferred (e.g., Feldman

et al. 1994; Phillips et al. 1996), generally for compact regions at times during or soon after the

impulsive phase. Impulsive-phase coronal densities as high as 1012 cm−3 are likely. Requiring Nb0

to be no higher than 1011 cm−3 gives an upper limit on Fe0 of 1021 electrons s−1 cm−2.

The return-current electric field strength decreases with distance as electrons are lost from the

flux density distribution. An important insight is obtained upon recognizing that electrons are not

lost from the distribution until their energy is reduced to Eth. The lowest energy electrons are the

first to be thermalized, those with energy Ec. The return-current electric field strength remains

constant and equal to Erc0 until the distance xrc is reached at which those electrons with initial

energy Ec are thermalized and lost from the distribution. This occurs when Eth = Ec − eErc0xrc,

or when

xrc =
Ec − Eth

eErc0
= 1.50× 1027 T

3/2
7 (Ec − Eth)

(λ/20)Fe0
cm, (10)

where the energies Ec and Eth are in keV. For Fe0 = 1019 electrons s−1 cm−2, T = 10 MK,

Ec = 20 keV, and Eth = 2 keV, xrc = 2.7× 109 cm, on the order of the half-length of a flare loop.

The return-current electric field strength Erc would not necessarily be constant below xrc if

the injected electron flux density distribution does not have a sharp low-energy cutoff. For a flatter

low-energy cutoff below some characteristic energy Ec, xrc becomes the distance at which Erc begins

a more rapid decrease.
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2.2. The Electron Distribution Function

The evolution of the electron flux density distribution function with distance x can be derived

assuming conservation of electron flux density:

F (E, x)dE = F (E0, 0)dE0, (11)

where E0 is the particle energy at x = 0. The assumption of flux conservation seems incorrect,

since electrons are lost from the distribution and, therefore, flux is not conserved. However, we can

make this assumption as long as the loss of electron flux can be treated as a boundary condition.

In our problem the boundary condition is that electrons are thermalized and removed from the

distribution at E = Eth. Above Eth flux is conserved.

Flux density is conserved only if the cross-sectional area of the electron beam (i.e., of the

current carried by the accelerated electrons) remains constant. As long as any changes in cross-

sectional area are independent of electron energy, such a change scales the magnitude of the flux

density distribution function by A(x)/A(0), where A is the cross-sectional area of the beam. Since

the focus here is on return-current losses, I assume that A remains constant.

Rewriting Equation 11 as F (E, x) = F (E0, 0)(dE0/dE), Equation 7 gives dE0/dE = 1 and

E0 = E + V (x). F (E0, 0) is given by Equation 5. Therefore, the distribution function at position

x is

F (E, x) =

{

(δ − 1)Eδ−1
c Fe0(E + V (x))−δ electrons s−1 cm−2 keV−1 E ≥ Ec − V (x)

0 E < Ec − V (x).

(12)

The original sharp low-energy cutoff moves downward in energy with increasing x until V (x) =

Ec or, more correctly, accounting for our boundary condition, until V (x) = Ec − Eth. Once

V (x) = Ec − Eth, the inequalities on the right side of Equation 12 become E ≥ Eth and E < Eth.

The potential drop V (x) becomes a new, effective low-energy cutoff, with the distribution function

becoming flat for E � V (x). If F (E0, 0) contained a high-energy cutoff or break, this break energy

would evolve with distance as Ebreak(x) = Ebreak(0)− V (x). Since V acts as a cutoff energy to the

electron distribution function, I will sometimes write its units as keV instead of kV.

The remaining challenge is to determine the functional form of V (x). This is most easily

accomplished by recognizing that

dV

dx
= eErc(x) = e2ηFe(x), (13)

where

Fe(x) =

∫

∞

0

F (E, x)dE. (14)

Integrating Equation 12 over E gives Fe(x):

Fe(x) =

{

Fe0 V (x) ≤ Ec − Eth

Eδ−1
c Fe0(Eth + V (x))1−δ electrons s−1 cm−2 V (x) > Ec − Eth.

(15)
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The inequalities on the right side of Equation 15 are equivalent to x ≤ xrc and x > xrc.

This result for the electron flux density can now be used in Equation 13 to solve for V (x).

For simplicity, I will assume here that η (primarily T ) has no spatial dependence and, therefore, is

constant. A spatially dependent resistivity is discussed in Section 2.3. The spatial dependence of

the potential drop is thus found to be, after some algebraic manipulation,

V (x) =







eErc0x = e2ηFe0x statvolt x ≤ xrc

Ec

[

δ
(

eErc0

Ec

)

(x − xrc) + 1
]1/δ

− Eth x > xrc.
(16)

The dependence on x of F (E, x), Fe(x), Erc(x) (= ηeFe(x)), and V (x) is now fully determined.

The potential drop increases linearly with x for x ≤ xrc since, as discussed above, Erc is constant

below xrc. Beyond xrc, Erc is decreasing and, for x � xrc, V (x) increases slowly as x1/δ. While Fe

and Erc are constant below xrc, they fall off as x−(1−1/δ) for x � xrc.

Fe and Erc are plotted as a function of distance in Figure 1 for δ = 5, a fixed plasma temper-

ature of 107 K, and several values of Fe0. The value of λ is fixed at 20. This spatial dependence

is also shown for δ = 3 and δ = 7 when Fe0 = 1021 electrons s−1 cm−2. The initial low-energy

cutoff and thermalization energy are taken to be Ec = 20 keV and Eth = 2.5kT = 2.15 keV. The

point at which the curves begin to decrease determines the value of xrc (xrc = 2.7× 109 cm when

Fe0 = 1019 electrons s−1 cm−2). Corresponding curves for the potential drop V (x) are shown in

Figure 2. Here the distance xrc is located where the curves cross the level V = Ec − Eth. There

is no dependence on δ until x > xrc. Above xrc, Fe and Erc decrease more rapidly with x as δ

increases and V increases less rapidly with x as δ increases.

The solution obtained here agrees with that of Knight & Sturrock (1977) if we set Eth = 0

and account for the difference in the assumed form of the injected electron flux density distribution

function. Instead of a sharp low-energy cutoff, Knight & Sturrock assume an injected distribution

function of the form F (E, 0) = K(E + E0)
−δ, a distribution that already becomes flat below the

initial cutoff energy E0.

2.3. Column Resistivity and Resistance

In this section I generalize the previous results to include spatial dependence of the plasma re-

sistivity. Just as collisional losses depend fundamentally on the column density N (x) =
∫ x
0 n(x′)dx′,

return-current losses depend on the column resistivity, ρ(x) =
∫ x
0 η(x′)dx′. Equation 13 can then

be rewritten as
dV

dρ
= e2Fe(V ), (17)
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and Equation 16 becomes

V (ρ) =







e2Fe0 ρ statvolt ρ ≤ ρrc

Ec

[

δ
(

e2Fe0

Ec

)

(ρ − ρrc) + 1
]1/δ

− Eth ρ > ρrc.
(18)

This equation contains a generalization of the return-current losses critical distance xrc to the

critical column resistivity ρrc, given by

ρrc =
Ec − Eth

e2Fe0
= 6.94× 109 (Ec − Eth)

Fe0
cm s, (19)

where, as in Equation 10, Ec and Eth are in keV. For the same values of Ec, Eth, and Fe0 as in

Equation 10, ρrc = 1.25× 10−8 cm s.

If the resistivity is classical (Equation 3) and we ignore the weak dependence of λ on x,

we can write T (x) = T0T̂ (x), giving η(x) = η0T̂ (x)−3/2. The column resistivity then becomes

ρ = η0

∫ x
0 [T̂ (x′)]−3/2dx′. Note that if Eth has a significant dependence on x, Equation 17 (or

Equation 13) is no longer separable and must be solved numerically.

The column resistivity is related to the total resistance at position x, given by R(x) =

V (x)/I(x) = V (x)/(eFe(x)A), where I(x) = J(x)A is the total current at x and A is the area

of the electron beam (and return current). For ρ ≤ ρrc, R = ρ/A. At ρrc,

Rrc =
ρrc

A
= 6.94× 109 (Ec − Eth)

Fe0A
s cm−1 = 6.24× 1021 (Ec − Eth)

Fe0A
ohm. (20)

Using the same values as above and A = 1016 cm2, Rrc is only 1.12×10−12 ohm. The corresponding

current Irc is 4.8× 1025 statampere, or 1.6× 1016 ampere.

2.4. Return-Current Plasma Heating

The heating rate per unit volume, Q(x) erg s−1 cm−3, of the thermal plasma resulting from

return-current losses is given by the spatial rate of change of the energy flux density of the accel-

erated electrons:

Q(x) =
d

dx

∫

F (E, x)EdE =

∫

dF (E, x)

dx
EdE =

∫

dF (E, x)

dE

dE

dx
EdE. (21)

The last term suggests that when more than one energy loss mechanism is operating and the total

energy losses can be written as the sum of the losses from each mechanism, the total heating rate can

be obtained by simply summing the heating rate for each mechanism. This is misleading, however,

since the electron flux density distribution function, F (E, x), is changed by the loss mechanisms.

Substituting Equations 6 and 8 (generalized to all positions x) for return current losses into

Equation 21 gives

Q(x) = −eErc(x)

∫

dF (E, x)

dE
EdE = −e2ηFe(x)

∫

dF (E, x)

dE
EdE. (22)
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The minimum value of the lower limit to the integral is Eth and the upper limit is infinity. Integrat-

ing by parts and using the requirement that EF (E, x) goes to zero at E = ∞ and the definition of

Fe(x) (Equation 14) gives

Q(x) = ηe2[Fe(x)]2 + ηe2Fe(x)EthF (Eth, x). (23)

The first term in Equation 23 is Joule heating by the return current, JrcErc. The last term is heating

by the nonthermal electrons when their energy is reduced to Eth and they are thermalized. For

the sharp low-energy cutoff, this term does not contribute until V (x) ≥ Ec − Eth or, equivalently,

until x ≥ xrc. This gives a discontinuity at xrc, resulting from the simplifying assumption that the

electrons become thermalized at the discrete energy Eth.

Substituting Equations 12 and 15 into Equation 23, the volumetric heating rate becomes

Q(x) =

{

ηe2F 2
e0 erg s−1 cm−3 x < xrc

ηe2F 2
e0(δ

Eth

Ec
+

V (x)
Ec

)(Eth

Ec
+

V (x)
Ec

)1−2δ x ≥ xrc.
(24)

The two solid curves in Figure 3 show this volumetric heating rate as a function of distance for

Eth = 2.5kT = 2.15 keV and Eth = 18 keV, respectively, with Fe0 = 1019 electrons s−1 cm−2,

T = 10 MK, λ = 20, Ec = 20 keV, and δ = 5. The results for Eth = 18 keV are reduced by a

factor of 100 to avoid overlapping curves. The vertical dashed lines show the value of xrc for the

two values of Eth. The dashed curves show the heating rate for Joule heating alone (first term

in Equation 23). The Joule heating rate (as well as the total heating rate) is constant below xrc.

At high values of x (x � xrc) the Joule heating rate falls off as x
2

δ
−2 if T (and λ) has no spatial

dependence.

The dotted curves in Figure 3 show the contribution of electron thermalization (last term in

Equation 23) to the total volumetric heating rate. This term is negligible when Eth � Ec. For

Eth = 2.15 keV, Figure 3 shows a small, but significant, contribution from this term. Electron

thermalization can exceed Joule heating above xrc, however, when Eth is comparable to Ec, as is

the case for Eth = 18 keV. The discontinuity in the total heating rate at x = xrc results from

our assumption that the electrons are thermalized at the discrete energy Eth (assumption 6 in

Section 2). This discontinuity would be smoothed out in a more realistic model. When x � xrc

this term falls off somewhat faster, as x
1

δ
−2, than the Joule heating term. The total return-current

volumetric heating rate falls off as x
2

δ
−2 when x � xrc.

We can estimate the electron flux density required for the volumetric heating to be significant

in the upper, coronal part of the flare loop using the requirement Q(x < xrc)∆t & nkT and

Equation 24, where ∆t is the interval of time over which the plasma is heated by the return

current. This expression becomes Fe0 &
√

( nkT
e2η∆t

) or, using Equation 3,

Fe0 & 6.4× 1016

(

20

λ

n9

∆t

)1/2

T
5/4
6 electrons s−1 cm−2, (25)
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where ∆t is in seconds. This result indicates that for a loop with typical active region temperature

and density, an electron flux density ∼ 1017 electrons s−1 cm−2 is required. If the loop is already

at a typical flare temperature, the electron flux density needs to be an order of magnitude higher.

As shown in Equation 24, the volumetric heating rate where x < xrc varies with the injected

electron flux density as F 2
e0. The dependence is much weaker when x � xrc, with Q ∝ F

2

δ
e0. The

total heating rate H(< xrc) (erg s−1) at distances less than xrc is easily calculated, using equations

24 and 10, to be

H(< xrc) = Fe0(Ec − Eth)A = 3.2× 1026

(

Fe0

1018

) (

Ec − Eth

20

)

A16 erg s−1, (26)

where A16 is the area of the electron beam (and return current) in units of 1016 cm2. It is interesting

to compare this to the injected energy flux of the electron beam. The energy flux density of the

injected electrons is

Pe0 =

(

δ − 1

δ − 2

)

EcFe0 = 3.20× 1010

(

δ − 1

δ − 2

)(

Ec

20

)(

Fe0

1018

)

erg s−1 cm−2. (27)

From this we find that the ratio of the heating rate in the region x < xrc to the injected electron

energy flux is
H(< xrc)

Pe0A
=

(

δ − 2

δ − 1

)(

1−
Eth

Ec

)

(28)

Thus, the fraction of the beam energy deposited in this region is greatest for a steep electron

distribution and Eth � Ec. However, when Eth ∼ Ec, as shown in Figure 3, the heat deposition is

enhanced just beyond xrc. For the case in Figure 3 with Eth = 2.15 keV, the ratio of the heating

rate at x < xrc to the injected electron energy flux is 0.67.

2.5. Comparison of Return-Current and Collisional Energy Losses

The energy lost by an electron per unit distance due to return-current losses is, from Equation 6

or Equation 13,

(

dE

dx

)

rc

= −
dV

dx
= −e2ηFe(x) = −1.07× 10−17

(

λ

20

)

T
−3/2
7

(

Fe

1019

)

erg cm−1

= −0.668

(

λ

20

)

T
−3/2
7

(

Fe

1019

)

keV Mm−1. (29)

The energy lost per unit distance due to collisional losses is, from Equations 2.2 and 2.3 of Holman

et al. (2011),

(

dE

dx

)

coll

= −K
n

E
= −4.80× 10−27

(

Λ

23

)

n

E
= −2.40× 10−18

(

Λ

23

)

n10

(

20

E

)

erg cm−1
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= −0.150

(

Λ

23

)

n10

(

20

E

)

keV Mm−1. (30)

Here Λ is the Coulomb logarithm for the interaction of a high-energy electron with thermal plasma

and E is in keV. One Mm (= 108 cm) is approximately 1.′′38 at a distance of 1 AU. Therefore, the

ratio of the return-current loss rate to the collisional loss rate is

(dE/dx)rc

(dE/dx)coll
= 4.45

(

λ

20

)(

23

Λ

)

T
−3/2
7 n−1

10

(

E

20

)(

Fe

1019

)

. (31)

From this result we see that the return-current loss rate exceeds the collisional loss rate at 20 keV

when Fe & 2.2×1018n10T
3/2
7 electrons s−1 cm−2. Return-current losses will dominate at even lower

electron beam flux densities when the ambient plasma density and/or temperature is lower. On

the other hand, the return-current losses (when x > xrc or, more generally, ρ > ρrc) and collisional

losses reduce the value of Fe with increasing distance.

In Figure 4 return-current energy losses as a function of distance x are plotted for electrons

with four initial energies, E0 = 20, 30, 40 and 50 keV (solid curves), and compared with collisional

energy losses for two values of the plasma density, n = 1010 cm−3 (dashed curves) and n = 1011 cm−3

(dotted curves). The return-current losses are for Fe0 = 7×1018 electrons s−1 cm−2 (Pe0 = 3×1011

erg s−1 cm−2), T = 10 MK, λ = 20, δ = 5, Ec = 20 keV, and Eth = 2.5kT = 2.15 keV. The vertical

dashed line shows the value of xrc (38 Mm). The return-current energy loss curves are computed

using Equations 7 and 16. The collisional energy loss curves are computed using the solution to

Equation 30, E(x) =
√

E2
0 − 2Knx.

For all initial electron energies in Figure 4, return-current losses exceed collisional losses when

n = 1010 cm−3, and collisional losses exceed return-current losses when n = 1011 cm−3, consistent

with results obtained from Equation 31. The return-current energy losses are seen to slow at

distances greater than xrc, when the electron flux density and, therefore, the electric field strength

begins to decrease. Even when the return-current energy losses dominate below xrc, collisional

energy losses can dominate at greater distance because of this reduction in the rate of energy loss

with distance.

The return-current energy loss rate is further slowed by collisional losses when x > xcoll ≡

(E2
c − E2

th)/2Kn ' 0.17(E2
c − E2

th)/n10 Mm or, more generally, when the column density N >

Ncoll ≡ (E2
c − E2

th)/2K ' 1.7 × 1017(E2
c − E2

th) cm−2, a rate reduction not reflected in Figure 4.

The distance at which the electron flux density begins to decrease will in fact be determined by

xcoll if xcoll < xrc. This inequality can be written as n > ncoll, where

ncoll =
e2ηFe0

2K
(Ec + Eth) = 2.23× 1010

(

λ

20

)(

23

Λ

)

T
−3/2
7

(

Fe0

1019

)(

Ec + Eth

20

)

cm−3. (32)

For the parameters used in Figure 4, xcoll < xrc for the dotted curves, when n = 1011 cm−3

(ncoll = 1.7×1010 cm−3). Therefore, when n = 1011 cm−3 and the loss of electrons due to collisions

is included, the return-current loss rate will begin to decrease beyond xcoll ' 6.7 Mm instead of xrc

and the return-current energy losses beyond xcoll are less than the results shown in Figure 4.
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2.6. X-Ray Source Brightness and Return-Current Losses

The bremsstrahlung X-rays from the nonthermal electrons accelerated in flares is usually ob-

served as thick-target emission from compact regions at the footpoints of flare magnetic loops. The

thickness of these regions is usually small compared to the height of the flare loops, because of

the rapid downward increase in plasma density in the relatively thin transition region and chro-

mosphere. Therefore, we can define a distance from the electron injection region at x = 0 to the

thick-target X-ray emission region, xtt. From hard X-ray time delay studies, Aschwanden et al.

(1996) have found this distance to range from 6 – 60 Mm. A single value of xtt is a good approx-

imation as long as the thickness of the thick-target source region is small compared to the value

of xtt. The value of xtt becomes significantly dependent on electron energy if the corona becomes

collisionally thick to electron energies of interest, as might occur during chromospheric evaporation.

In general, X-rays of energy ε and below are affected by return-current losses when V (xtt) ∼ ε.

The electron flux density entering into the thick-target region is not diminished by return-current

losses until V (xtt) > Ec − Eth or, equivalently, until xrc < xtt (Equation 15). We can use this

condition as an estimate of the minimum requirement for the X-ray emission to be affected, although

the lower end of the electron distribution function is diminished somewhat before V (xtt) > Ec−Eth

(Equation 12). Noting the dependence of xrc on Fe0, we can derive a critical injected electron flux

density above which the flux density into the thick-target region begins to diminish, F tt
e0. Using

Equation 10, we obtain

F tt
e0 =

Ec − Eth

e2ηxtt
= 1.0 × 1019

(

20

λ

)

T
3/2
7

(

3 × 109

xtt

)(

Ec − Eth

20

)

electrons s−1 cm−2. (33)

This result indicates that the injected electron flux density for which return-current losses become

significant is on the order of 1018−1019 electrons s−1 cm−2. In terms of electron energy flux density

(Equation 27), this corresponds to 4 × 1010 − 4 × 1011 erg s−1 cm−2 for Ec = 20 keV and δ = 5.

It is interesting that these injected energy flux densities are on the order of those for which the

transition from gentle to explosive chromospheric evaporation is estimated to occur (Fisher et al.

1985).

The dependence of Fe(xtt) on Fe0 is plotted in Figure 5, using Equations 15 and 16, for xtt =

30 Mm, T = 10 MK, λ = 20, δ = 4, Ec = 20 keV, and two values of Eth, Eth = 2.5kT = 2.15 keV

(solid curve) and Eth = 18 keV (long dashes). The dotted vertical lines show the value of F tt
e0 for

both cases. It is interesting that for Eth = 2.15 keV, as Fe0 increases a local maximum is reached

at F tt
e0 followed by a local minimum and then Fe(xtt) continues to increase after the local minimum.

For Eth = 18 keV Fe(xtt) only increases with increasing Fe0, but at a much lower rate. Both curves

increase as F
1/δ
e0 well above F tt

e0 and the local minimum. We see that the increase of Fe(xtt) is so

slow that it is effectively limited to values on the order of F tt
e0, especially when δ is large and the

local minimum is present.

An analytical search for extrema in Fe(x) as a function of Fe0 shows that the local maximum

and corresponding minimum are obtained when Eth < δ−2
δ−1Ec. The value of Fe(x) at the local
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minimum is

Fmin
e (x) =

Ec

e2ηx
(δ − 1)

1

δ
−1

[

δ

(

1 −
Eth

Ec

)

− 1

]
1

δ

. (34)

The value of Fe0 at which this minimum occurs is

Fe0 =
Ec

e2ηx

[

δ

(

1 −
Eth

Ec

)

− 1

]

. (35)

The value of Fmin
e (xtt) and the corresponding value of Fe0 are indicated in Figure 5 by the crossed

short-dashed lines. The dotted curve in Figure 5 shows another result without a local minimum.

This curve is for δ = 2.1 and Eth = 2.15 keV. This curve is close to the maximum rate at which

Fe(xtt) can increase with Fe0 beyond F tt
e0.

The brightness spectrum of the X-rays emitted from the thick-target source region by electrons

experiencing energy losses at the rate dE/dt is given by (Brown 1971; Emslie 1980; Holman 2003;

Holman et al. 2011)

B(ε) =
1

4πR2

∫

∞

ε
F (E0)

∫ ε

E0

ni(x)σ(ε, E)

dE/dx
dEdE0, (36)

where R is the distance from the observer to the source region, usually one astronomical unit, ni

is the plasma ion number density, and σ(ε, E) is the bremsstrahlung cross section. F (E0) is the

injected electron flux density distribution. The inner integral is the photon flux distribution above

energy ε (and below photon energy E0) emitted by a single electron of energy E0. The outer integral

integrates this result over the injected distribution of all electrons with energies E0 ≥ ε. If ε < Ec,

the lower limit of the outer integral becomes Ec. The X-ray brightness spectrum rather than the

usual flux spectrum is obtained because F (E0) is the electron flux density distribution rather than

the flux distribution (electrons s−1 keV−1).

If we continue with our assumption that return-current losses are not significant in the thick-

target region and use the Kramers approximation to the bremsstrahlung cross section, a simple

analytic result is obtained for the X-ray brightness spectrum. In this case dE/dx is the result for

collisional losses alone (Equation 30) and F (E0) is given by Equation 12 at xtt. The Kramers cross

section is σ(ε, E) = Z2σ0/(εE), where σ0 = 7.90×10−25 cm2 keV and Z2 ' 1.4 is the weighted mean

square atomic number of the target plasma, weighted by the number density of each ion species in

the plasma. From Equation 36, the X-ray brightness spectrum (for ε ≥ max[Ec − V (xtt), Eth] and

for R = 1 AU) is

B(ε) ≈ 1.17× 10−34 Eδ−1
c Fe0

δ − 2
ε−1(ε + V (xtt))

2−δ photons cm−2s−1cm−2keV−1. (37)

This has the expected ε−(δ−1) dependence when ε � V (xtt). It also has the expected ε−1 dependence

when ε � V (xtt).

Emslie (1980) estimated that in the presence of return-current losses the integrated bremsstrahlung

photon brightness above 20 keV will be limited to 10−15 photons cm−2 s−1 cm−2. He estimated
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that this limiting brightness will be reached when the injected electron flux density (above 20 keV)

exceeds 1019 electrons cm−2 s−1. This estimate was obtained by arguing that when return-current

losses are large enough to dominate over collisional losses, the integrand for computing the thick-

target bremsstrahlung X-ray emission becomes independent of the injected electron beam flux

density. Here I show that this is not an upper limit, but instead is roughly the integrated X-ray

brightness when the electron flux density and, consequently, the X-ray brightness begin to increase

more slowly than linearly as the injected electron flux density increases. The results derived here

show how the estimates scale with other physical parameters.

It is interesting to first look at the dependence of the integral of Equation 37 over all photon

energies above 20 keV, B(> 20 keV), on the injected electron flux density Fe0, even though this

result assumes that return-current losses do not dominate in the thick-target region. The leading

term gives a linear dependence on Fe0, but V (xtt) also depends on Fe0. Results obtained by

numerically integrating Equation 37 are shown in Figure 6 for xtt = 10 Mm, T = 10 MK, λ = 20,

Ec = 20 keV, Eth = 2.15 keV, and five values of δ. We see that there is no maximum value ∼ 10−15

photons cm−2 s−1 cm−2 or higher, but the rate of increase of the integrated X-ray brightness with

Fe0 does decrease as Fe0 approaches the value of F tt
e0 (as V (xtt) approaches 20 kV). For values of

δ & 5, B(> 20 keV) goes through a local maximum followed by a local minimum before continuing

to rise at a reduced rate, similar to the evolution of Fe(xtt) with Fe0 (Figure 5). The rate of increase

of B(> 20 keV) with Fe0 first decreases and then increases to the new, lower rate, as Fe0 exceeds

F tt
e0 and the electron flux density at xtt begins to decrease below the value of Fe0.

Let’s now consider the assumption that return-current losses dominate everywhere, so dE/dx

is given by Equation 29. Since return-current losses are proportional to Fe(x) and Fe(x) becomes

arbitrarily small as x increases (Equation 15), return-current losses cannot be everywhere smaller

than collisional losses, as assumed. Nevertheless, we can formally explore the consequences of

this assumption. The dependence on Fe0 can best be seen by making the potential drop V the

integration variable. The inner integral in Equation 36 becomes, using Equations 7 and 29,

ν(ε, E0) =

∫ E0−ε

0
σ(ε, E0 − V )

ni(x(V ))

e2η(x(V ))Fe(V )
dV. (38)

The dependence of ni and η on V is obtained by solving Equation 18 for ρ, and then for x.

Substituting Equation 15 for Fe(V ) gives

ν(ε, E0) =
1

e2Fe0
×















∫ E0−ε
0 σ(ε, E0 − V )

ni(x(V ))
η(x(V )) dV V ≤ Ec − Eth

∫ Ec−Eth

0 σ(ε, E0 − V )ni(x(V ))
η(x(V ))

dV

+ E1−δ
c

∫ E0−ε
Ec−Eth

σ(ε, E0 − V )ni(x(V ))
η(x(V ))

(Eth + V )δ−1dV V > Ec − Eth

(39)

As noted by Emslie (1980), the linear dependence on Fe0 cancels out, since F (E0) in the outer

integral is proportional to Fe0. The X-ray brightness still depends on Fe0 through ni(x(V ))/η(x(V )),

however, since the relationship between V and x depends on Fe0. Therefore, the fact that these
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leading terms cancel out does not lead to a clear upper limit, independent of Fe0. However, it is

interesting that if ni/η has no spatial dependence, B(ε) is independent of Fe0. Therefore, although

unrealistic, it is instructive to consider this case next.

We again estimate the integrated X-ray brightness using the Kramers bremsstrahlung cross

section. Since we are interested in B(> ε), we use the integrated cross section for all photons

emitted by an electron of energy E above photon energy ε: σ(> ε, E) = Z2σ0 ln(E/ε)/E. For

constant ni/η, the integrated brightness becomes (Equations 36 and 39, together with Equation 3)

B(> ε) =
σ0/e2

4πR2

(

ni

η

)

f

(

ε

Ec
, δ,

Eth

Ec

)

' 4.21× 10−15n10T
3/2
7 f

(

ε

Ec
, δ,

Eth

Ec

)

photons cm−2s−1cm−2, (40)

where, writing ε̂ = ε/Ec, Êth = Eth/Ec, Ê0 = E0/Ec, and V̂ = V/Ec,

f
(

ε̂, δ, Êth

)

δ − 1
=

∫ 1−Êth+ε̂

ε̂
Ê−δ

0

∫ Ê0−ε̂

0

ln((Ê0 − V̂ )/ε̂)

Ê0 − V̂
dV̂ dÊ0 +

∫

∞

1−Êth+ε̂
Ê−δ

0

∫ 1−Êth

0

ln((Ê0 − V̂ )/ε̂)

Ê0 − V̂
dV̂ dÊ0 +

∫

∞

1−Êth+ε̂
Ê−δ

0

∫ Ê0−ε̂

1−Êth

ln((Ê0 − V̂ )/ε̂)

Ê0 − V̂
(Êth + V̂ )δ−1dV̂ dÊ0. (41)

Numerical computations of f(ε̂, δ, Êth) verses ε̂ for five values of the electron power-law index

δ are shown in Figure 7. The value of Êth is taken to be 0.108 (2.15 keV/20 keV). The value

of f(ε̂, δ, Êth) decreases as Êth approaches 1, since xrc and, therefore, the electron flux density

beyond xrc decreases as Eth increases. The increasing values of f(ε̂, δ, Êth) as δ increases may be

surprising, since the electron flux density beyond xrc decreases as δ increases (Figure 1). However,

the magnitude of the potential drop beyond xrc also decreases with increasing δ (Figure 2) and,

therefore, the electron energy loss rate is smaller. The result is that more photons are emitted per

electron and this dominates over the increased loss of electron flux density.

Equation 40 is an upper limit to the integrated X-ray brightness if niT
3/2 is the highest value

of this quantity along the path of the streaming electrons. A lower value of ni means fewer ions

on which to scatter and, therefore, lower emission. A lower value of T means a higher resistivity,

greater electron energy losses and lower X-ray emission. The inclusion of collisional losses would

also decrease the emission. However, this upper limit depends on the values of several physical

parameters and, according to the numerical results obtained here, is ∼ 200 − 500 times greater

than 10−15 photons cm−2 s−1 cm−2.
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3. Comparison with Numerical Simulations

The analytical results obtained here are well suited for obtaining a deeper understanding of

the numerical results of Zharkova & Gordovskyy (2006) (hereafter, ZG06). These authors compute

steady-state electron distributions and resulting photon spectra for electrons experiencing both

return-current and collisional losses. The plasma resistivity is assumed to be classical. Their

electron distribution does include a spread in pitch angle, but magnetic mirroring is not included

and, as I show in the next two paragraphs, their electron distribution is nearly one-dimensional

(1-D).

ZG06 took the pitch-angle dependence of their electron distribution to be proportional to

exp{−[(µ − 1)/∆µ]2} (defined in Zharkova & Gordovskyy 2005), where µ is the cosine of the

electron pitch angle and ∆µ is taken to have the value 0.2. This electron distribution is smaller by

e−25 at 90◦ than its value at 0◦, highly concentrating the electron pitch angles around 0◦.

The effectively 1-D character of their electron distribution is further demonstrated by the plots

of return-current electric field strength (normalized to the Dreicer electric field) versus column

density in their Figure 1. The electric field strength is constant (with a slight rise to be discussed

below) up to a column density that decreases with increasing electron energy flux density. It then

sharply drops off with increasing column density. This behavior is characteristic of the 1-D model,

as seen in Figure 1. The sharp drop-off occurs at the column density Nrc corresponding to xrc.

When electrons are decelerated by the return-current electric field to the point that their pitch

angle reaches 90◦, they begin to propagate in the −x direction and are lost from the downward-

streaming electron beam. This decreases the beam flux density as the electrons are lost, resulting

in a corresponding decrease in the return-current electric field strength with distance at distances

less than xrc (and column densities less than Nrc) and a smoother drop-off at xrc. The absence of

this decline in the ZG06 electric field plots indicates that the electron flux density distribution can

be treated as being 1-D.

3.1. Return-Current Electric Field Strength

The injected electron flux density energy distribution used by ZG06 is a single power-law

with a low-energy cutoff at Ec = 8 keV and a high-energy cutoff at 384 keV. Collisional losses

will affect these electrons and, therefore, the return-current electric field at column densities N &

E2
c /2K ' 1 × 1019 cm−2. In Figure 1(c) of ZG06, for an injected electron energy flux density of

Pe0 = 1 × 1012 erg s−1 cm−2, Nrc ' 1 × 1018 cm−2. Therefore, collisional losses should not be

important in this case for column densities on the order of and less than Nrc.

We have seen here that the electric field strength at distances less than xrc is Erc0 = ηeFe0

(Equation 8) and is independent of the power-law index of the injected electron flux density dis-

tribution. In ZG06’s Figure 1, however, Erc/ED below Nrc for δ = 7 is somewhat greater than for
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δ = 3. (In ZG06, γ denotes the electron distribution power-law index and δ denotes the photon

spectral index. Here, as elsewhere in this paper, I write δ for the electron index and γ for the pho-

ton index, the more common usage.) This is because the electron energy flux density, rather than

the number flux density, is specified in each of the three panels (and throughout the paper). From

Equation 27, Fe0(δ = 7)/Fe0(δ = 3) for fixed values of Pe0 and Ec is 1.67. (For Pe0 = 1 × 1012 erg

s−1 cm−2, Ec = 8 keV, and δ = 3, Fe0 = 3.91×1019 electrons s−1 cm−2.) This at least qualitatively

explains the differences in the initial values of Erc/ED. It also follows from Equation 10, however,

that xrc(δ = 3)/xrc(δ = 7) = Fe0(δ = 7)/Fe0(δ = 3) = 1.67. It is interesting that this difference is

not apparent in their Figure 1.

Unfortunately, ZG06 do not explicitly show the plasma temperature and density distributions

used in their computations. From their Figure 1(c) we find that Nrc ' 1×1018 cm−2 and Erc0/ED '

150. (Note that, for this high value of the ratio of Erc0 to ED, the plasma resistivity is expected

to be enhanced above the classical value and the evolution of the beam/return-current system may

not be simple. For this comparison, however, the assumption of classical resistivity is appropriate.)

ZG06 define ED as 2πe3nλ/kT (this is a factor of 2 smaller than the definition in Holman (1985)).

Taking the plasma density to be approximately constant in the coronal part of the loop and using

Equation 10 for xrc, these equations together give n(Ec − Eth)/eED = kT (Ec − Eth)/(2πe4λ) '

1.5× 1020 cm−2. No solution can be obtained with Eth ∼ kT . Taking Eth = 0 gives T ' 570 MK,

n ≈ 1× 107 cm−3, and xrc ≈ 1× 1011 cm. These are extreme values for an actual flare loop! Also,

570 MK corresponds to kT ' 49 keV, which is not consistent with the value of 8 keV for Ec when

collisional losses in the hot plasma are taken into account. Nevertheless, these are the values I

obtain that allow comparison with ZG06’s electric field results in Figure 1(c).

A plot of Erc/ED for δ = 3 and δ = 7 as a function of the column density N = nx for these

values of T and n is shown in Figure 8(a). As discussed above, the difference in the values of

Nrc = nxrc and of Erc0/ED for δ = 3 and δ = 7 are greater than in Figure 1(c) of ZG06. Also, for

N > Nrc, Erc/ED does not drop off nearly as fast with increasing N as in Figure 1(c). Instead,

Erc/ED falls off as N−(δ−1)/δ (see Section 2.2). The results obtained here and by ZG06 agree

qualitatively, however, in that Erc/ED for δ = 7 falls off more rapidly than for δ = 3.

The differences between the results obtained here and those of ZG06 can be understood in

terms of spatial variations in the plasma temperature and density. The slight bump in Erc/ED

just before it begins to decrease with N must result from the plasma temperature beginning to

decrease significantly at this column density, since Erc/ED ∝ Fe0/(nT 1/2). Since n increases with

column density, only a decrease in T can cause an increase in Erc/ED. The more rapid decrease of

Erc/ED with N in Figure 1(c) must be caused be an increase in plasma density with N . Collisional

losses will also cause a more rapid decrease, but, as discussed above, this should not be significant

at N ≈ 1018 cm−2.

Figure 8(b) shows an example of the effect of spatially varying plasma temperature and density

on the dependence of Erc/ED on N . The plasma temperature is taken to decrease exponentially
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as T0 exp(−x/xT ), with T0 = 570 MK and xT = 30 Mm. The density increases exponentially as

n0 exp(x/xn), with n0 = 9 × 107 cm−3 and xn = 100 Mm. As before, Ec = 8 keV, Eth = 0,

and Pe0 = 1 × 1012 erg s−1 cm−2. The column density is now N (x) = n0Ln(ex/Ln − 1). From

Equation 19 and the definition of ρ(xrc), xrc = 2
3LT ln(1+ 3

2
xrc0

LT
), where xrc0 is the value of xrc for

T = T0 and for the value of Fe0 corresponding to the value of δ. The column density corresponding

to xrc is now given by Nrc = n0xn[(1 + 3
2

xrc0

xT
)

2xT
3xn − 1]. Vertical lines show the values of Nrc for

δ = 3 and δ = 7, as in Figure 8(a).

There is now an increase in Erc/ED below Nrc, similar to the increase in ZG06’s Figure 1.

This is caused by the decrease in temperature with distance. This same decrease in temperature

decreases, rather than increases, the rate of decline of Erc/ED beyond Nrc. A substantially more

rapid rate of decline is obtained because of the increase in density with distance, however. This

rapid decline is entirely due to the increase in ED with distance. The difference between Nrc(δ = 3)

and Nrc(δ = 7) is now substantially smaller than in Figure 8(a), more consistent with the results

of ZG06.

Figure 1(c) of ZG06 shows a flattening of Erc/ED at higher values of N , most notably for

δ = 3 in the range N ≈ 1020−1022 cm−2. This could be associated with a more rapid decline in the

plasma temperature and/or a less rapid increase in the plasma density. A decrease in the plasma

ionization could also contribute to the flattening.

3.2. X-Ray Brightness Spectra

ZG06 show computed photon spectra in their Figure 10, and results derived from these spectra

in Figures 11 and 12. Here I compute thick-target bremsstrahlung X-ray brightness spectra from

the 1-D return-current electron flux density distribution function, Equation 12, and compare the

computed spectra with the results of ZG06. As discussed in Section 2.6, I assume that return-

current losses are solely important up to the thick-target region at distance xtt, and insignificant

beyond xtt, where collisional losses dominate. As in Section 3.1, these assumptions are most likely

to be valid for the highest electron energy flux density considered by ZG06, 1012 erg s−1 cm−2.

With these assumptions and use of the Kramers bremsstrahlung cross section, it is possible to

obtain relatively simple analytical expressions for comparison with the numerical results. Since the

electron distribution of ZG06 contains a high-energy cutoff, denoted here as in ZG06 as Eupp, and

photon energies below the low-energy cutoff at Ec = 8 keV are considered, I extend Equation 37

to account for these cutoffs:

B(ε) = 1.17× 10−34Fe0

(

δ − 1

ε

)

× (42)
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0 ε ≥ Eupp − Vtt,

where Vtt is shorthand for V (xtt).

The spectra in Figure 10 of ZG06 are normalized to their value at 4 keV and are computed for

δ = 3 and δ = 7. The only free parameter in the 1-D model for comparison to these results is the

value of the potential drop at xtt, Vtt, since the low- and high-energy cutoffs of the electron flux

distribution injected at x = 0 are fixed at Ec = 8 keV and Eupp = 384 keV.

In Figure 9 brightness spectra, normalized to their value at 4 keV, are computed using Equa-

tion 42 and plotted for several values of Vtt for both values of δ. Points (diamond symbols) from

Figure 10(b) of ZG06, for Pe0 = 1012 erg s−1 cm−2, are shown for comparison. None of the curves

provide a good fit to the ZG06 results. For δ = 3, both Vtt = 15 kV and Vtt = 315 kV provide

a reasonable fit up to about 40 keV. For δ = 7, Vtt = 12 kV provides a reasonable fit up to

about 60 keV. The Kramers cross section is not best suited for computing spectra from electron

distributions containing cutoffs, however (cf. Brown et al. 2008).

For a more accurate comparison I have computed the X-ray spectra using the thick-target

fitting function in the RHESSI data analysis software, which uses the Haug (1997) bremsstrahlung

cross section (cf. Holman 2003; Holman et al. 2003). The default double-power-law electron distri-

bution function is replaced with Equation 12, with the addition of a sharp high-energy cutoff at

Eupp−Vtt and with Vtt replacing V (x). The results are shown in Figure 10. Better fits to the ZG06

results are obtained, but only at energies of 100 keV and below. Agreement is not good above

100 keV, especially for δ = 3. These fits give Vtt ' 130 kV for δ = 3 and Vtt ' 14 kV for δ = 7.

The discrepancy is particularly evident for δ = 3. For Vtt = 130 kV, the high-energy cutoff is at

384− 130 = 254 keV. The ZG06 spectrum shows emission well above 254 keV, however.

It is interesting to compare these deduced values for Vtt with values expected from the simple

constant density and temperature model obtained in Section 3.1, represented by the electric field

plot in Figure 8(a). The corresponding potential drop curves for δ = 3 and 7 are plotted in

Figure 11. The dotted diagonal line shows the column density N = E2

2K (Equation 30) at which

an electron of energy E = V looses all its energy from collisional losses alone. Since the electrons

injected at N = 0 range in energy from 8 to 384 keV (horizontal dotted lines), the thick target

region (without return-current losses) ranges from about 1.1×1019 cm−2 to 2.5×1022 cm−2 (vertical

dotted lines). The intersection of the potential drop curves with the start of the thick-target region

gives Vtt ' 22 kV for δ = 3 and Vtt ' 15 kV for δ = 7.

The simple model is, of course, much too simple for quantitative conclusions. The result for Vtt

when δ = 7 agrees rather well with the result from the spectral comparison, however. The results

also agree qualitatively in that Vtt for δ = 3 is larger than Vtt for δ = 7 in both cases. But the
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quantitative results for δ = 3 do not agree. The model assumption that V (N ) is constant in the

thick-target region is clearly violated for δ = 3. The increase of V with N will be diminished by

collisional losses and by the significant decrease in the value of Eupp−V (N ). Nevertheless, this flat

electron distribution is more likely to violate the model assumptions than the steep distribution

with δ = 7, since in the thick-target region V (N ) is increasing as N 1/δ for return-current losses

alone (for n constant and N � Nrc; see the discussion after Equation 16). Further comparisons

with numerical models that combine return-current and collisional losses are needed to test the

realm of validity of this simple model.

3.3. X-Ray Spectral Index

The thick-target X-ray spectrum with return-current losses taken into account, approximated

by Equation 42, contains substantial deviations from the single-power-law photon spectrum, B(ε) =

B0(ε/ε0)
−γ . These deviations are caused by the return-current energy losses, but they are also

caused by the presence of a low-energy cutoff (Ec) and a high-energy cutoff (Eupp) in the in-

jected electron distribution. The local spectral index at energy ε, γ(ε) = −d logB(ε)/d log ε =

−(ε/B)(dB/dε), can be obtained analytically from Equation 42. The result is

γ(ε) = 1 +

(

ε

δ − 1

) 1 −
(

Ec

Eupp

)δ−1

Ec

δ−2 − ε+Vtt

δ−1 +
(

Ec

Eupp

)δ−1 (

ε+Vtt

δ−1 −
Eupp

δ−2

)

ε < max[Eth, Ec − Vtt]

γ(ε) = 1+ε
(ε + Vtt)

1−δ − E1−δ
upp

(ε+Vtt)2−δ

δ−2 + E1−δ
upp (ε + Vtt −

δ−1
δ−2Eupp)

max[Eth, Ec−Vtt] ≤ ε < Eupp−Vtt. (43)

For no high-energy cutoff (Eupp → ∞), these equations reduce to

γ(ε) = 1 + (δ − 2)
ε

(δ − 1)Ec − (δ − 2)(ε + Vtt)
ε < max[Eth, Ec − Vtt]

γ(ε) = 1 + (δ − 2)
ε

ε + Vtt
max[Eth, Ec − Vtt] ≤ ε. (44)

Plots of γ(ε) computed from Equations 43 and 44 are shown in Figure 12 for δ = 3 (top panel)

and δ = 7 (bottom panel). The top dashed curve in each panel shows γ(ε) for no high-energy cutoff

and Vtt = 0 kV. The low-energy cutoff for all curves is Ec = 8 keV. Above ε = Ec the spectrum has

the expected thick-target power-law dependence with γ = δ − 1. The dotted curves show γ(ε) with

Eupp = 384 keV. For δ = 7 the power-law dependence of the spectrum is retained below ∼100 keV.

For δ = 3, no substantial part of the spectrum is well described by a single power law. For an

electron distribution this flat, the X-ray emission from electrons with energies as high as 384 keV

is still significant at photon energies as low as 8 keV.

The three solid curves in each panel of Figure 12 are for Vtt = 14, 130, and 260 kV, respectively.

The three remaining dashed curves show the corresponding result when there is no high-energy
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cutoff. Although 14 kV is a relatively small potential drop, it significantly affects most of the X-ray

spectrum over the plotted range of photon energies. For the solid curves, the high-energy cutoff at

xtt has been reduced from 384 keV to 370, 254, and 124 keV, respectively. Comparison of the solid

and dashed curves shows the substantial impact of this high-energy cutoff on the X-ray spectrum,

especially for δ = 3.

4. Spectral Evolution and the Return-Current “Bump”

ZG06 show plots of the photon spectral index at 20 and 100 keV and their difference versus

three values of the electron flux density distribution power-law index and three values of the injected

electron energy flux density. Since the power-law index and the injected energy flux density are

not observable quantities, here I will look at the dependence of Vtt and spectral index, γ, on the

hard X-ray brightness, B(ε), quantities that can be deduced from spectral fits. These quantities

are computed as a function of the injected electron flux density, Fe0, assuming that all changes are

due to changes in Fe0. Fe0 increases from 1015 to 1021 electrons s−1 cm−2. The plasma temperature

and the distance to the top of the thick-target region, xtt, are taken to be 10 MK and 3× 109 cm,

respectively. The low-energy cutoff is 20 keV and the high-energy cutoff is taken to be high enough

to not affect the results (i.e., no high-energy cutoff).

Figure 13 shows how Vtt varies with B(ε) for three values of the injected electron flux density

distribution power law index and for the X-ray brightness measured at two different photon energies.

Where Vtt � Ec−Eth = 17.85 keV, Vtt and, therefore, the effective low-energy cutoff, increases (or

decreases) linearly with B(ε). In this regime both Vtt and B(ε) are directly proportional to Fe0. At

higher photon energies and values of δ, the X-ray brightness is lower for a given value of Vtt (and

Fe0). This linear relationship is lost when Vtt ' Ec−Eth. When Vtt � Ec−Eth, Vtt increases more

slowly with B(ε) or, conversely, B(ε) increases more rapidly with increasing Vtt.

An interesting feature appears where Vtt ' Ec − Eth in the curves for ε = 20 keV and δ = 5

and 7. For this lower value of ε and higher values of δ, as Vtt increases B(ε) decreases somewhat

and reaches a local minimum value before continuing to increase at a faster rate. This behavior is

similar to that in Figure 6. This would be observed as a small sub-peak, or “bump”, on the rise (or

fall) of the impulsive peak of a flare, followed by a more rapid increase in the X-ray brightness with

increasing Vtt. The increase in the rate of brightening would be seen at all photon energies, but

the sub-peak would only appear at lower energies. This may provide a signature of return-current

losses in flare light curves.

Figure 14 shows the evolution of spectral index with X-ray brightness for the same parameters

as in Figure 13. As Fe0 and B(ε) increase, γ remains constant until Vtt becomes high enough to

significantly decrease the energy of electrons of energy ε and above (Vtt & 0.1ε). The spectrum

then flattens with increasing rapidity until Vtt = Ec − Eth, after which the spectrum continues to

flatten, but at a lower rate. Only the spectral index at 20 keV for δ = 3 comes close to the lowest
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possible value, γ = 1. The dip in brightness seen in Figure 13 for δ = 5 and 7 is also seen here as

the spectrum flattens.

To explore more directly the possibility of seeing this bump in X-ray light curves, I end this

section by looking at the dependence of B(ε) on Fe0. This dependence is representative of the X-ray

light curve if Fe0 varies linearly with time or, at least, not too differently from a linear dependence.

Figure 15 shows this dependence for δ = 5 (top panel) and δ = 7 (bottom panel). Each panel shows

curves for nine values of the photon energy, starting at ε = 20 keV (top curve) and increasing in

steps of 10 keV to ε = 100 keV (bottom curve). The brightness increases linearly with Fe0 for

Vtt < Ec − Eth, and as F
2/δ
e0 for Vtt � Ec − Eth. In addition to this flattening of the dependence,

the return-current bump appears in the curves at photon energies ε less than (δ − 3)(Ec − Eth). It

is interesting that there is no sub-peak when δ ≤ 3. When ε satisfies this condition, the value of

Fe0 at the local maximum is on the order of and somewhat smaller than F tt
e0 (Equation 33). These

interesting features may provide a valuable tool for recognizing return-current losses in flare data.

5. Summary and Conclusions

The 1-D, steady-state model examined here demonstrates how return-current losses can have a

substantial impact on the observed X-ray emission from flares, primarily through the flattening of

the nonthermal electron distribution function at low energies and enhanced heating in the coronal

part of flare loops. Both the electron energy losses and the heating rate are sensitive to the injected

electron flux density, Fe0. Since Fe0 is sensitive to the low-energy cutoff, Ec, to the injected electron

flux density energy distribution, the results are also sensitive to the value of Ec.

When the energy of the nonthermal electrons becomes low enough because of deceleration

by the return-current electric field and collisional losses, they are thermalized and lost from the

beam. When enough electrons are thermalized to significantly decrease the electron beam flux

density, return-current losses and the heating rate begin to decrease with distance from the injection

point. The distance at which this occurs, xrc (Equation 10), is sensitive to Ec and Fe0 and to

the approximate energy at which the electrons are thermalized, Eth, if it is comparable to Ec.

The plasma resistivity is also important, which, classically, is determined primarily by the plasma

temperature. This evolution is only sensitive to the plasma density, however, where collisional

losses are important. If xrc becomes smaller than the distance to the thick-target footpoints where

most of the hard X-ray emission is emitted, this decrease in the rate of return-current losses has

interesting observational consequences.

The flattening of the electron distribution by return-current losses results in a new effective low-

energy cutoff to the electron distribution that increases with distance x from the injection point.

This low-energy cutoff is the potential drop V (x) corresponding the the integral of the return-

current electric field from the injection point to x. V increases linearly with the column resistivity

ρ (Equation 17) until the distance xrc is reached or, more generally, until the corresponding column
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resistivity ρrc is reached (Equation 19). Beyond this distance V increases at a much lower rate.

This rate is further reduced by collisional losses (Section 2.5).

How do we best recognize return-current losses in solar flare data, and how do we use this

recognition to deduce the electron flux density distribution injected from the acceleration region,

the subsequent evolution of the accelerated electrons, and their impact on the flare plasma? As

I briefly review in the Introduction, several methods and possible identifications of return-current

losses are already presented in the literature.

Zharkova & Gordovskyy (2006) emphasized comparing the spectral index at a low and a high

photon energy with numerical model results. Such a comparison was done for two spectra from

two flares in Zharkova et al. (2010). For each case an estimate of the electron energy flux density

at the times of the two spectra was obtained. This approach, however, does not take full advantage

of the spectral shape and does not provide a test of the plausibility of the model. The spectral

evolution for one of the flares, 2002 July 23 for example, has been found by Kontar et al. (2003)

to be consistent with nonuniform ionization of the target plasma. The spectral indices, as shown

in Section 3.3, are also sensitive to assumptions about low- and high-energy cutoffs to the injected

electron flux density distribution.

Alexander & Daou (2007) found evidence for the upper limit of 10−15 photons cm−2 s−1

cm−2 to the integrated X-ray brightness above 20 keV, deduced by Emslie (1980) to result from

return-current losses. In Section 2.6 I find that this is not an upper limit but, rather, is roughly

the point at which the rate of increase of brightness with increasing injected electron flux density

significantly decreases because of the thermalization of beam electrons. Nevertheless, return-current

losses should be important when the integrated brightness is of this magnitude and, therefore, this

can be a valuable indicator that return-current losses are significant. A difficulty with this test is

that X-ray images can only provide an upper limit to the area of the emission and, therefore, a

lower limit to the integrated X-ray brightness. Also, it is not clear why Alexander & Daou (2007)

did not find any integrated source brightnesses greater than this estimated value.

Comparison of coronal and footpoint hard X-ray spectra, as in Battaglia & Benz (2008),

provides an excellent tool for identifying return-current losses. As pointed out by Hannah & Kontar

(2011), however, another loss mechanism such as the bump-on-tail instability could be responsible

for energy loss between the coronal source and the footpoints. The scarcity of observed nonthermal

coronal X-ray sources also limits the usefulness of this method.

An important characteristic of return-current losses is the flattening of the X-ray spectrum at

low photon energies resulting from the flattening of the electron distribution at low energies. This

flattening has the character of a low-energy cutoff. The X-ray spectrum flattens more slowly with

decreasing photon energy than for a sharp low-energy cutoff. This difference would be difficult to

detect with current observations, however. Also, a similar spectral flattening could result from a

plasma instability such as the bump-on-tail instability.

The most distinctive characteristic of return-current losses is the spectral evolution. The
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spectrum flattens to higher energies with both distance from the injection point and with increasing

injected electron flux density, Fe0. Flattening of the spectrum with distance is also a characteristic of

collisional losses, but flattening of the integrated spectrum with increasing Fe0 is not a characteristic

of collisional losses. Thus, as the X-ray brightness increases, so does the effective low-energy cutoff.

This behavior has been noted in a sample of flare spectra studied by Sui et al. (2007). Although

this evolution is distinctive, it might also be produced in the acceleration region or, possibly, by a

plasma instability. Therefore, appropriate spectral evolution, together with one or more additional

observational characteristics, is most appropriate for confidently identifying return-current losses.

The return-current “bump” and reduced rate of rise (increased rate of fall) in hard X-ray light

curves as peak brightness is approached (as the brightness declines) is another feature that can

be used to identify return-current losses (Section 4 and Figure 15). Related features could also

be identified in the time evolution of the low-energy cutoff (Figure 13) and X-ray spectral index

(Figure 14). A limitation of these identifiers is that this evolution is a function of Fe0, a quantity

not directly obtained from observations and, therefore, with a time evolution that is not directly

known. On the other hand, identification of the bump and its dependence on photon energy in

light curves could be a strong indicator of return-current losses.

Perhaps the most interesting physical characteristic of return-current losses is that spectral

fitting to deduce the value of the low-energy cutoff provides a direct measure of the potential drop

in the flare loop. This is best done (in the context of the 1-D, analytical model at least) by fitting

the computed bremsstrahlung emission from Equation 12 to the hard X-ray spectra. The time

evolution of Vtt determined from these spectral fits gives the time evolution of the potential drop.

If the low-energy cutoff to the injected electron flux distribution, Ec, is not hidden beneath the

flare thermal bremsstrahlung emission, so the early spectral evolution can be observed, the derived

low-energy cutoff will first decrease as Ec−Vtt while Vtt increases with time as Fe0 increases. When

Vtt becomes comparable to the observed photon energies, the increase in Vtt with Fe0 should be

observed. Should a high-energy cutoff, Eupp, be present in the injected electron distribution, it will

also decrease as Eupp − Vtt (Equation 42).

As shown in Equation 18, the initial linear rise of Vtt with Fe0 is proportional to the column

resistivity, ρ. Therefore, the time evolution of the potential drop also gives the time evolution of the

column resistivity. Since the classical resistivity depends primarily on the plasma temperature, this

can be compared with observations of the thermal plasma in the flare loop. Of particular interest,

an exceptionally high value of the resistivity as compared to the classical resistivity would indicate

the presence of anomalous resistivity in the loop.

Unless the early evolution of the spectra at low photon energies is observable, one of the most

difficult parameters to deduce is Ec. As seen in Equation 37, a spectral fit gives Eδ−1
c Fe0, not Fe0

or Ec independently. The difference between Ec and the thermalization energy, Ec − Eth, can be

estimated, however, if the value of Vtt can be determined when its dependence on X-ray brightness

begins to change (Section 4). This gives an estimate for Ec if Eth � Ec or if an independent
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estimate of Eth can be obtained.

An additional test for return-current losses is to compare the results deduced from the hard

X-ray emission with the thermal evolution of the flare plasma. Direct heating of the coronal

plasma by the return current and thermalized electrons can be quite substantial (Section 2.4).

For the beam and plasma parameters used in Figure 3, the heating rate in a coronal volume of

1025 cm3 is 1027 erg s−1. As discussed at the end of Section 2.4, the return-current heating rate at

distances less than xrc is 67% of the power carried by the beam (for Eth = 2.15 keV). Therefore,

for relatively high electron beam flux densities, heating to > 10 MK flare temperatures should be

more rapid than when return-current losses are not significant. The inclusion of return-current

losses in chromospheric evaporation models should reveal more detailed aspects of how the thermal

response is modified.

A weakness of the analytical model presented here is that, if the increase in the potential drop

within the thick-target region has a significant impact on the resulting X-ray emission, the use of the

value of the potential drop at the top of the thick-target region, Vtt, is not valid. The model results

must then be computed with collisional and return-current losses contributing simultaneously (as

in Emslie 1980). The impact of collisional losses on the model is discussed in Section 2.5. In future

work a numerical model including both loss mechanisms together will be developed, and the results

compared to those from the analytical model.

A potentially important signature of return-current losses is electrons temporarily trapped in

the top of the flare loops by the return-current electric field. In the 1-D model considered here,

no electrons are turned around by the electric field, so that they move upward in the loop and

are re-accelerated by the electric field. All electrons are thermalized before they can be reflected.

Electrons with high enough pitch angles would be reflected and trapped in the loop as long as the

electric field is sustained. The acceleration of back-scattered electrons by the return-current electric

field, including the presence of magnetic mirroring, has been simulated and discussed by Karlicky

(1993) and Karlicky & Henoux (1993). These are also included in the simulations of Zharkova et

al. (2010) and Kuznetsov & Zharkova (2010). This interesting topic will be addressed in a future

paper.
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Fig. 1.— Electron flux density (left axis) and return-current electric field strength in kilovolts

per centimeter (right axis) are plotted as a function of distance for three values of the injected

electron flux density. The results are for δ = 5 except for Fe0 = 1021 electrons s−1 cm−2, where

results for δ = 3 and δ = 7 are also shown. The plasma temperature is assumed to be constant at

T = 10 MK and the default value of λ = 20 is used. The initial cutoff energy is Ec = 20 keV and

Eth = 2.5kT = 2.15 keV.
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Fig. 2.— Potential drop is plotted as a function of distance for four values of the injected electron

flux density. The solid curves are for δ = 5. Several curves for δ = 3 and δ = 7 are also shown

(short dashes). Other parameters are the same as in Figure 1. The horizontal line (long dashes)

shows the value of Ec − Eth.
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Fig. 3.— Volumetric heating rate, Q(x), is plotted as a function of distance for Fe0 = 1019 electrons

s−1 cm−2, T = 10 MK, λ = 20, δ = 5, Ec = 20 keV, and two values of Eth, Eth = 2.5kT = 2.15 keV

and Eth = 18 keV (solid curves). The two vertical dashed lines show the value of xrc for the two

values of Eth. The dashed curves show the value of Q(x) for Joule heating alone. The dotted curves

show the heating due to thermalization of the electrons at Eth alone. The results for Eth = 18 keV

are reduced by a factor of 100 to avoid overlapping curves.
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Fig. 4.— Comparison of return-current and collisional energy losses as a function of distance for

electrons with four initial energies, E0 = 20, 30, 40 and 50 keV. The solid curves show the decrease

in electron energy resulting from return-current losses for Fe0 = 7×1018 electrons s−1 cm−2 (Pe0 =

3 × 1011 erg s−1 cm−2), T = 10 MK, λ = 20, δ = 5, Ec = 20 keV, and Eth = 2.5kT = 2.15 keV.

Collisional losses for n = 1010 cm−3 (dashed curves) and n = 1011 cm−3 (dotted curves) are shown.

The vertical dashed line shows the value of xrc.
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Fig. 5.— Electron flux density at the location of the thick-target footpoint, xtt, is plotted as a

function of the injected electron flux density for xtt = 30 Mm, T = 10 MK, λ = 20, δ = 4,

Ec = 20 keV, and two values of Eth, Eth = 2.5kT = 2.15 keV (solid curve) and Eth = 18 keV (long

dashes). The two vertical dotted lines show the value of F tt
e0 for the two values of Eth. The crossed

horizontal and vertical lines (short dashes) show the value of Fmin
e (xtt) and the value of Fe0 at

which this minimum occurs, respectively, for Eth = 2.15 keV. The dotted curve is for δ = 2.1 and

Eth = 2.15 keV.
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Fig. 6.— X-ray brightness integrated over all photon energies above 20 keV as a function of

the injected electron flux density when energy losses in the thick-target region are dominated by

collisional losses (Equation 37). Results are shown for five values of the injected electron density

distribution power-law index, δ. Other assumed parameter values are xtt = 10 Mm, T = 10 MK,

λ = 20, Ec = 20 keV, and Eth = 2.5kT = 2.15 keV. The dotted vertical line shows the value of F tt
e0.
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Fig. 7.— Integrated X-ray brightness function f(ε̂, δ, Êth) (Equation 41) verses ε̂ for five values of

the electron power-law index δ and Êth = 0.108.
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Fig. 8.— (a) Return-current electric field normalized to the Dreicer electric field vs. column density

for δ = 3 (dashed curve) and δ = 7 (solid curve). The plasma temperature and density, derived

for comparison with Figure 1(c) of Zharkova & Gordovskyy (2006), are taken to have the constant

values (independent of column density) T = 570 MK and n = 1 × 107 cm−3. The low-energy

cutoff is Ec = 8 keV, Eth = 0, and the electron energy flux density is 1 × 1012 erg s−1 cm−2. The

vertical lines are the corresponding values of Nrc = nxrc. (b) Normalized return-current electric

field when the plasma density increases exponentially and the temperature decreases exponentially

with distance (see Section 3.1).
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Fig. 9.— Thick-target X-ray brightness spectra, normalized to their value at 4 keV, computed

using Equation 42 for δ = 3 (top panel) and δ = 7 (bottom panel) and several values of Vtt. For

comparison with spectra from Figure 10(b) of Zharkova & Gordovskyy (2006), Ec = 8 keV and

Eupp = 384 keV. The symbols (diamonds) are points from the spectra in Figure 10(b). The dotted

curves are for Vtt = 0 kV. The solid curves in the upper panel (δ = 3) are, from top to bottom, for

Vtt = 15, 315, and 354 kV. The solid curves in the lower panel (δ = 7) are, from top to bottom, for

Vtt = 6, 12, and 24 kV.
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Fig. 10.— Thick-target X-ray brightness spectra, normalized to their value at 4 keV, computed

for Ec = 8 keV and Eupp = 384 keV using the Haug (1997) bremsstrahlung cross section, for

comparison with spectra from Figure 10(b) of ZG06. The symbols are from Figure 10(b) and the

curves are computed using the 1-D distribution function with return-current losses (Equation 12).

The diamond symbols and dashed curve are for δ = 3. The square symbols and solid curve are for

δ = 7. These fits give best values for the potential drop at the top of the thick-target region of

Vtt = 130 kV for δ = 3 and Vtt = 14 kV for δ = 7.
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Fig. 11.— The computed potential drop V as a function of column density N for δ = 3 and δ = 7

(solid curves) for comparison with the spectral fit results in Figure 10. The plasma density and

temperature are assumed to be everywhere n = 1×107 cm−3 and T = 570 MK, the values deduced

from Figure 1(c) of ZG06. Ec = 8 keV and Eupp = 384 keV (dotted horizontal lines) are the lower

and upper cutoffs to the electron distribution. The thick-target region is between the two dotted

vertical lines. Vtt is the value of the potential drop at the top of the thick-target region (dashed

horizontal lines). The dotted diagonal line shows the values of N at which the energy of electrons

of energy V is reduced to zero by collisional losses.
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Fig. 12.— Thick-target X-ray spectral index plotted as a function of photon energy for an in-

jected electron flux density distribution with a power-law index of 3 (top panel) and 7 (bottom

panel), computed from Equations 43 and 44 with Ec = 8 keV. The dotted and solid curves are for

Eupp = 384 keV. The dashed curves are for no high-energy cutoff (Eupp → ∞). The dotted and

corresponding dashed curves are for Vtt = 0 kV. The solid curves and their corresponding dashed

curves are for Vtt = 14, 130, and 260 kV.
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Fig. 13.— Variation of the potential drop at the top of the thick-target region, Vtt, with the

thick-target X-ray brightness, B(ε), as the injected electron flux density increases from 1015 to 1021

electrons s−1 cm−2. The top panel shows the X-ray brightness at 20 keV and the bottom panel

shows the X-ray brightness at 100 keV. Each panel shows curves for three values of the power-law

index of the injected electron flux density distribution: δ = 3, 5, and 7. The curves are computed

using Equations 37 and 16 with T = 10 MK, Ec = 20 keV, Eth = 2.15 keV, xtt = 3 × 109 cm, and

no high-energy cutoff.
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Fig. 14.— Variation of the thick-target spectral index, γ(ε), with the thick-target X-ray brightness,

B(ε), as the injected electron flux density increases from 1015 to 1021 electrons s−1 cm−2. The

top panel shows the X-ray brightness and spectral index at 20 keV, and the bottom panel shows

the X-ray brightness and spectral index at 100 keV. Each panel shows curves for three values

of the power-law index of the injected electron flux density distribution: δ = 3, 5, and 7. The

curves are computed using Equations 37 and 44 with T = 10 MK, Ec = 20 keV, Eth = 2.15 keV,

xtt = 3 × 109 cm, and no high-energy cutoff.
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Fig. 15.— Variation of the thick-target photon brightness at energy ε, B(ε), with the injected

electron flux density, Fe0. The top panel shows the X-ray brightness for δ = 5, and the bottom

panel shows the X-ray brightness for δ = 7. Each panel shows curves for nine values of the photon

energy, starting at ε = 20 keV (top curve) and increasing in steps of 10 keV to ε = 100 keV (bottom

curve). The curves are computed using Equations 37 and 16 with T = 10 MK, Ec = 20 keV,

Eth = 2.15 keV, xtt = 3 × 109 cm, and no high-energy cutoff.


