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ABSTRACT

The spatio-spectral maximum entropy method (SSMEM) has been developed by Komm and coworkers in 1997
for use with solar multifrequency interferometric observation. In this paper we further improve the formulation of
the SSMEM to establish it as a tool for astronomical imaging spectroscopy. We maintain their original idea that
spectral smoothness at neighboring frequencies can be used as an additional a priori assumption in astrophysical
problems and that this can be implemented by adding a spectral entropy term to the usual maximum entropymethod
(MEM) formulation. We, however, address major technical difficulties in introducing the spectral entropy into the
imaging problem that are not encountered in the conventionalMEM. These include calculation of the spectral entropy
in a generally frequency-dependent map grid, simultaneous adjustment of the temperature variables and Lagrangian
multipliers in the spatial and spectral domain, and matching the solutions to the observational constraints at a large
number of frequencies. We test the performance of the SSMEM in comparison with the conventional MEM.

Subject headinggs: Sun: radio radiation — techniques: image processing — techniques: interferometric —
techniques: miscellaneous — techniques: spectroscopic

1. INTRODUCTION

The maximum entropy method (MEM) is a technique for ex-
tracting asmuch information fromameasurement as is justified by
the signal-to-noise ratio of the data. The MEM is used in a variety
of fields, including radio astronomy (Wernecke & D’Addario
1977), tomography (Mottershead1995), cellular structure (Dubertret
et al. 1995), and magnetohydrodynamics (Jordan & Turkington
1995). When this is applied to astronomical radio observations,
where Fourier-transform imaging is used, the MEM deals with
a model in the x-y plane so that its Fourier-transform pair in the
u-v plane is compared with the measured visibilities for agree-
ment. Based on information theory, theMEMuses a priori knowl-
edge in reconstructing spatial images in addition to the quantities
available from the direct measurement. Typically, the apriorities
are uniformity and positivity of the map (Wernecke & D’Addario
1977; Gull & Daniell 1978; Skilling & Bryan 1984; Cornwell &
Evans 1985; Narayan & Nityananda1986; Sivia 1996), and use
of such a priori information helps to reduce the ambiguity in
imaging caused by insufficient u-v sampling due to the limit in
the number of baselines and array configuration (Rohlfs&Wilson
1996; Cornwell et al. 1999).

In many astrophysical problems, however, it is more desirable
to retrieve spatial and spectral information together. This scientific
need has not been exploited by the existing radio interferometers.
However, the use of multifrequency techniques in synthesis in-
terferometry will increase with the newer generations of radio
telescopes equipped with wideband receivers and back ends
(e.g., the Frequency-Agile Solar Radiotelescope; Bastian 2003;
White et al. 2003). The traditional multifrequency synthesis
(MFS, e.g., Sault & Conway 1999), which assumes little change
of sourcewith frequency, would not fully address this issue. There
are other types of MFS that are designed to address the frequency-

dependent source structure using the well-established CLEAN
deconvolution method (Conway & Stannard 1975; Braun et al.
1987; Murphy 1988; Conway et al. 1990). These techniques are,
however, targeted to a relatively narrow range of frequencies
(typically 10%). More ideally, we seek an algorithm that retains
the spectral variation of intensity at a spatial point and uses that
information in determining the brightness temperature at the
point to achieve wideband (extending over an octave) imaging
spectroscopy. In this regard, we note that Komm et al. (1997,
hereafter KHG97) presented an algorithm of spatio-spectral max-
imum entropy method (SSMEM), developed in an application
to the multifrequency interferometric data gathered with the
Owens Valley Solar Array (OVSA), which extracts the spectral,
as well as spatial, information under the principle of the MEM.

The goal of this paper is to establish a working SSMEM algo-
rithm suitable for wideband imaging spectroscopy by refining
the original formulation by KHG97. The essence of the KHG97
algorithm lies in so-called spectral entropy, which is explicitly
designed to force the spectrum at a given spatial position to run
smoothly with frequency by communicating with intensities at
neighboring frequencies as a local power law. Since it is not the
smoothness but the uniformity that the traditional entropy ensures,
the spectral entropy does not really conform to the MEM prin-
ciple and hence requires justification. We argue that astronom-
ical continuum spectra usually appear in a power-law function
of frequency (e.g., Dulk 1985), and therefore this knowledge
can serve as additional information in spectral reconstruction,
whereas there is no such specific a priori information known for
spatial images. The power-law index itself is, of course, known
only after the multifrequency imaging is completed. Since it is
still an ad hoc assumption that the spectral entropy term can add
to the traditional entropy term, we have to justify our approach
based on the test result of the proposed algorithm using a model
of choice.

The plan of this paper is as follows: In x 2 we present the
formulation of the object function of the SSMEM. We discuss
optimization techniques and convergence criteria for use within
the SSMEM in x 3.We present the result of a performance test in
x 4, and finally conclude in x 5.
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2. AN EXTENSION OF MEM TO SSMEM

The conventional MEM solves an imaging problem by maxi-
mizing the spatial entropy subject to any constraints involved
with the imaging. In the Lagrangian formulation, this is equiv-
alent to maximizing the object function, which contains the en-
tropy and the constraint terms. After Cornwell & Evans (1985),
the object function, J, in the following form has often been used:

J ¼ H � ��2 � �F; ð1Þ

where � and � are the Lagrangian multipliers and the quantities
H, �2, and F are defined as

H ¼ �
X
j

Tj ln
Tj

mje

� �
; ð2aÞ

�2 ¼
X
i

Vi � V 0
i

�� ��2
�2
i

� nV ; ð2bÞ

F ¼
X
j

Tj � F 0: ð2cÞ

Here Tj and mj are, respectively, the map temperature and de-
fault temperature at the jth pixel and V 0

i is the visibility mea-
sured at the ith baseline. Here j represents an index over map
pixels, running in the range of 1 � j � nT , and i denotes an
index over interferometric baselines in 1 � i � nV , where nT
is the total number of the map pixels and nV is the total number
of the baselines. In the case of rotational synthesis, i includes
both baselines and times. Under this formulation, Tj values are
adjusted until the corresponding object function J reaches its
maximum. At the same time, the Lagrangian multipliers, � and
�, are also updated to keep the resulting �2 and F in agreement
with their expectation values, i.e., zero. As a result, we end up
with a solution map Tj that has the maximum entropy while
satisfying the constraints.

To extend the MEM to the SSMEM, we define a new object
function that represents the entropy of the system in both spa-
tial and frequency space. We compare this situation to the grand
canonical ensemble as opposed to the canonical ensemble in
statistical mechanics. Namely, the above object function J at an
individual frequency that we now call the spectral object function
Jk is like a canonical ensemble, and the grand object function is
defined in the grand canonical ensemble.We thus use two indices,
the usual index j for the spatial grids and the other k for frequency,

X
j

!
XnT
j¼1

Xn�
k¼1

and Tj ! Tjk ;

where n� is the number of frequencies and nT is again the num-
ber of map pixels, assumed to be independent of the frequency.
Now under this index convention, we represent the grand object
function modified to the form

J ¼
X
k

Jk

¼
X
k

Hk �
X
k

� k�
2
k �

X
k

�kFk þ �
X
k

Sk : ð3Þ

The last term, the new feature in the SSMEM, consists of the
spectral entropy S and the associated constant �, a measure of
the relative importance of the spectral entropy to the spatial en-
tropy. Since Sk is an entropy term, we assign the positive sign to

it and take the dimensionless constant � as a user-supplied
parameter rather than a Lagrangian multiplier.
What makes this extension of the MEM to the SSMEM non-

trivial is the spectral entropy that KHG97 introduced in the
following form:

S ¼
X
k

Sk ¼ �
Xn�
k¼1

XnT
j¼1

�jk ln
�jk
mjke

� �
; ð4Þ

where

�jk ¼ mjk þ Tjk � Tjk
� ��� ��: ð5Þ

In this expression, mjk is the default map at position j and fre-
quency k, for which we use a spatially flat map satisfying the
flux constraint at each frequency, and hTjki is the logarithmically
interpolated temperature from adjacent frequencies, and there-
fore � jk is a measure of how much a temperature Tjk at a given
frequency and spatial point differs from the one that smoothly
connects temperatures at nearby frequencies at the same spatial
point. Because the microwave spectrum from the solar active
region is expected to follow a power law in most of the frequency
range, we can expect that the difference Tjk � hTjki

�� �� at each fre-
quency should be minimized in the reconstruction. Were there
no other constraint, Sk would be maximized when Tjk ¼ hTjki,
and the spectrum at a given spatial position would follow a
power-law function of frequency as we intended (see x 1).
Suppose T̃�

jk denotes brightness temperatures belonging to the
two neighboring frequencies �k�1 at the same spatial location xjk.
The quantity hTjki is then found by logarithmic interpolation
along the frequency axis,

ln Tjk
� �

¼ aþk lnT̃þ
jk þ a�k lnT̃�

jk ; ð6Þ

with

aþk ¼ ln �k=�k�1ð Þ
ln �kþ1=�k�1ð Þ ;

a�k ¼ 1� aþk ;

which will ensure power-law spectral behavior. As a compli-
cation, T̃�

jk are not generally contained in the Tjk 0, but must be
interpolated to the positions x̃�jk , which match the spatial point
xjk but belong to k

0 ¼ k � 1 frequency slices. We illustrate how
to compute hTjki in Figure 1 using a temperature T12 at position
x1 and frequency �2 as an example. As Figure 1a shows, this
complication arises only because the pixel size of radio maps,
to be optimal for mapping, should vary continuously in pro-
portion to the inverse of the frequency, i.e., x̃�jk 6¼ xjk 0 . KHG97
simplified this problem by dividing the whole frequency into
three spectral regimes within each of which the same spatial res-
olution is shared among different frequencies. We here maintain
the continuous variation of map resolution, and therefore the
temperatures T̃�

jk at neighboring frequencies should be interpo-
lated from spatially neighboring temperatures at each frequency
plane �k�1. To determine T̃�

jk , we introduce a bilinear inter-
polation factor R�

jkj 0k 0 such that

T̃�
jk ¼

X
j 0k 0

R�
jkj 0k 0 Tj 0k 0 ; ð7Þ

where R�
jk j 0k 0 is nonzero only when k

0 ¼ k � 1 and at four points
j0 surrounding the point x̃�jk , which matches xjk. Figure 1b shows
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hTjki relative to Tjk in the spectrum, which is used as a measure
of the spectral entropy.

It is important that we are able to express the spectral entropy
in an analytic form using the constant factors R�

jk j 0k 0 . This allows
us to express the first and second derivatives of the spectral
entropy term also in analytic forms even when a frequency-
dependent map grid is used. The expressions for the gradients
are given in the Appendix.

3. OPTIMIZATION TECHNIQUES

Optimization of the entropy consists of the maximization of
the object function and adjustment of the Lagrangian multi-
pliers so that the constraints are satisfied. We express these two
steps in terms of two sets of equations,

:T J ¼ 0 and �2
k ;Fk

� �
¼ 0: ð8Þ

As way to solve these equations, Sault (1990) suggested combin-
ing the above two sets into the following single set of equations:

:�J ¼ 0: ð9Þ

Here � ¼ Tjk ; � k ; �k

� �
and equation (8) could be converted to

equation (9) because the second set of equations in equation (8)
can alternatively be written as @J /@� k ; @J /@�kf g ¼ 0. Equa-
tions such as equation (9) can conveniently be solved using
the Newton-Raphson method as suggested by Sault (1990),

	� ¼ � :�:�J
� 	�1

= :�J : ð10Þ

Note that up to this point, only a trivial difference between Sault
(1990) and the present study is found in the additional fre-
quency index k.

A technical issue in using the Newton-Raphson method is
that the Hessian matrix :�:�J is so huge in size as to make

full calculation undesirable. Sault (1990) suggested, following
Cornwell & Evans (1985), using a modified Newton-Raphson
method in which only the diagonal elements of the matrix are
used. The effect of missing off-diagonal elements can be accom-
modated by a constant boosting factor. We use the same approach
for the SSMEM. Note, however, that this approximation can be
justified for the Hessian matrix of the �2 term but is yet to be
verified for the spectral entropy term present in our SSMEM. At
this stage, we proceed without any justification and rely on the
resulting solution map to see whether such diagonalization ap-
proximation can be used with the present SSMEM.

To set the criterion for map convergence, the magnitude of
:T J needs to be defined. Since this is a vector quantity and the
criterion should also be met at each frequency, we define the
magnitude of the vector in the row corresponding to the kth
frequency as

:T Jj jk¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXnT
j¼1

@J

@Tjk

� �2

vuut :

We want this quantity to be smaller than a small fraction of
that of the constituent terms,

:TJj jk� 


ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
:THkj j2þ�2

k :T�2
k

�� ��2þ�2
k :TFkj j2þ�2 :TSj j2k

q
;

ð11Þ

where we set 
 to a small value, 
 ¼ 0:03.
For the criteria of the constraints, we can consider the con-

straints met if the absolute values �2
k

�� ��; Fkj j
� �

are small com-
pared with nVk ;F

0
k

� �
or comparable to their uncertainties. We

thus set the criteria for the constraints as

�2
k

�� �� � max 
nVk ; 	�
2
k

� 	
; ð12aÞ

Fkj j � max 
F 0
k ; 	Fk

� 	
; ð12bÞ

Fig. 1.—Illustration of the reference temperature hT i. (a) Map grids at three frequencies (�1, �2, and �3). We denote the temperature at position grid point 1 at fre-
quency �2 as T12 , for instance.While T12 is immediately found on the map grid at �2, hT12i should, however, be interpolated from T̃�

12 at �1 and T̃
þ
12 at �3 at the position of

x12. Since the latter two quantities are not always found on their grids, they should be interpolated from neighboring temperatures. Here T̃�
12 is bilinearly interpolated

from four adjacent grid points (T11, T21, T31, and T41), and likewise T̃þ
12 is from four adjacent grid points (circles in the map grids at �3). (b) After T̃

�
12 are determined,

hT12i is logarithmically interpolated from them (dotted line). The difference T12 � T12h ij j is now a measure for the deviation of the spectrum from a power law and used
in defining the spectral entropy.
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for every frequency k. Now the uncertainties in the constraints
�2
k and Fk would simply be

	�2
k ¼

ffiffiffiffiffiffiffiffiffi
2nVk

p
; ð13aÞ

	Fk ¼ 	F 0
k ; ð13bÞ

where 2nVkð Þ1/2 is the standard deviation of the �2 distribution
and 	F 0

k is the uncertainty of F 0
k given as an input parameter.

4. PERFORMANCE TEST

In this section we test the efficiency of the algorithms and the
quality of the resulting maps and spectra using models for radio
interferometric array configuration and radiation sources.

4.1. Procedure

We choose a model interferometric array that resembles the
current OVSA system as shown in Figure 2a. A total of 21 u-v
points are obtained from such a configuration in a snapshot
mode at one frequency. For the rotational synthesis, we take u-v
points every minute obtaining 1260 u-v points per frequency for
1 hr. Figure 2b shows the corresponding u-v distribution at a
single frequency (�5000 points) for 4 hr rotational synthesis.
Note that the model array has a very sparse and asymmetric u-v
distribution, and we create the model visibilities with frequency-
dependent noise, making the spatio-spectral reconstruction more
challenging. Our main concern is how each method handles this
situation.

For our purpose the model source should have a frequency-
dependent morphology. We create the radiation source in close
resemblance to a real source in the Sun. The microwave radi-
ating electrons in the Sun are trapped in coronal magnetic loops
connecting two footpoints. At low frequencies the whole loop is
optically thick, and thus the source appears as single large object
with a temperature close to the coronal temperature. Toward high
frequencies the loop top becomes optically thin, and thus the
source size decreases with frequency and shrinks to two sources
located at footpoints where magnetic fields are stronger (see,
e.g., Kundu et al. 1989; Gary & Hurford 1994). We simulate
this frequency-dependent behavior using a combination of two
Gaussian sources whose size and temperature vary with fre-

quency. The model sources at selected frequencies are shown in
the top panels of Figure 3. At intermediate frequencies, the source
morphology gradually changes from one to another.
To simulate observed visibilities, we need to add noise. We

first generate noiseless model temperatures tjk , which are then
fast Fourier-transformed into the u-v plane and interpolated into
the above u-v points shown in Figure 2 to obtain the true observed
visibilities, V t

ik . We then create the observed visibilities V 0
ik by

adding noise at each baseline i and frequency k, according to the
rule

V 0
ik ¼ V t

ik þ N�ik ; �ik ¼ 0:03 V t
ik

�� ��þ 0:02; ð14Þ

where N is random noise of unit variance and �ik is the stan-
dard deviation of the data in units of solar flux units (sfu).

4.2. Performance of SSMEM

We use 20 frequencies between 1.4 and 18.0 GHz and a map
size of typically 128 by 128 pixels. We run the SSMEM for three
different values of �. Setting � ¼ 0 in the present formulation
makes the SSMEM reduce to the standard MEM. On the other
hand, a high value of � represents a case in which the role of
spectral smoothness is more emphasized than that of the usual
spatial entropy. This comparison therefore demonstrates how
well the spectral entropy term functions in the present SSMEM.
The results are shown in Figure 3. The top panels (Figs. 3a–

3c) show the two-dimensional maps reconstructed with three
values of � (contours) at three frequencies in comparison with
the true source (gray-scale image). In spite of the small number
of baselines along the north-south direction, the round shape of
the Gaussian sources is fairly well reconstructed at all frequen-
cies regardless of the adopted �-value. All results thus show
little difference in terms of the two-dimensional morphology. To
check in more detail, we plot, in the middle panels (Figs. 3d–3f ),
the one-dimensional scans of the maps along the y ¼ 000 line. It
appears that the maps obtained with � ¼ 3 are closest to the true
source at some frequencies but give rather higher temperatures
than the true source at 5.8 GHz. The overestimation must be an
artifact and thus is unwanted. To compare the SSMEMwith the
MEM, we can see that the temperatures reconstructed under the

Fig. 2.—Models used in the test run. (a) Model array set in resemblance with the actual antenna configuration of OVSA. Geographic north is up, and east is to the
right. Each circle represents an antenna position. (b) The u-v coverage during 4 hr rotational synthesis resulting from the antenna configuration. Here u points west and v
points north.
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MEMare lower than those of the true source, while the SSMEM
produces temperatures closer to the true source at all frequencies.
At 5.8 GHz, the MEMmap contains more artificial structure than
the SSMEMmaps, indicating that the reconstructed map deviates
more from the true source, and the spectrum also disagrees with
the model (see Fig. 3h). Figure 3g shows the one-dimensional
scan along x ¼ �2000, where the u-v points are relatively deficient.
In this case, the MEM solution deviates more from the source,
whereas the SSMEM solution with � ¼ 1 approaches the true
source more closely.

The advantage of the SSMEM over the MEM is more ob-
vious in terms of the spectral reconstruction. The last two
panels, Figures 3h–3i, compare the local spectra reconstructed
at the center of the two sources with the model spectra. The
MEM spectra show more unwanted fluctuations, whereas both
SSMEM spectra appear smoother and have closer resemblance
to the original spectra at both locations. This demonstrates that
the spectral entropy in the SSMEM plays the intended role of

information exchange across neighboring frequencies so that
the resulting spectra appear as a more power-law–like spectrum
than in the MEM. We, however, should note that the spectra
reconstructed by all methods commonly fall more rapidly than
the original model toward the lowest and the highest frequencies.
This is primarily because the locations of the u-v points at these
frequencies are inadequate to fully characterize the visibility
distribution in u-v space. Therefore, the SSMEM is not immune
to the problem of insufficient u-v sampling. We can only expect
that the SSMEM provides a relatively better spectrum than the
MEM in the frequency range where a moderate amount of u-v
information is available.

KHG97 pointed out that increase of � may lead to a problem
called ‘‘spectral oversmoothing.’’ Our SSMEM solutions do
not show such behavior, and we suspect that this owes to the
frequency-dependent Lagrangian multipliers and convergence
criteria, which were underdeveloped in the KHG97 formulation
but are now working properly. Instead we see the reconstructed

Fig. 3.—Test run of the SSMEM using differing values of �. The top panels show maps at (a) 2.0 GHz, (b) 5.8 GHz, and (c) 10.6 GHz. The true source is shown as a
gray-scale image, and the contours are the reconstructed images: the solid lines now represent the results obtained using � ¼ 1, and the dashed and dotted lines show the
results for � ¼ 0 (MEM) and � ¼ 3 (SSMEMwith emphasis on spectral entropy). The contour levels increase by 20% of the maximum of the true source. Panels (d )–
( f ) show one-dimensional scans of the maps shown in the top panels along y ¼ 000. Panel ( g) is a one-dimensional scan of the maps at x ¼ �2000, while panels (h) and
(i) are the local spectra measured at the position of two local maxima: (x; y) ¼ (�2000; 000) and (2000, 000), respectively.
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temperature at strong sources getting higher as we increase �,
which is certainly an unwanted artifact. We thus understand that
the expected role of the spectral entropy term is an auxiliary
improvement of the local spectrum by sharing information at
adjacent frequencies and that the factor � should be set at a
modest value (i.e., 1 � � � 2) so as not to interfere with the
function of the spatial entropy.

The present calculation was performed using IDL 6.0 on a
Windows 2000 PC having a 500 MHz Pentium III CPU and
256 MB of RAM. In the present calculation, we use 20 fre-
quencies between 1.4 and 18.0 GHz and a map size of typically
128 by 128 pixels. When 4 hr synthesis (about 5000 u-v points
per frequency) is used, the total time required to finish the job is
14,000, 24,000, and 22,000 s when � ¼ 0, 1, and 3, respectively.
When � ¼ 0 the entropy term calculation is faster because the
program skips over the calculation related with the spectral
entropy. Comparing the � ¼ 1 and 3 cases, however, we cannot
see any significant change of the required time with larger �. A
similar trend continues when we adopt a much poorer, snapshot
u-v coverage (21 u-v points per frequency), in which it took 990,
2800, and 3400 s for � ¼ 0, 1, and 3, respectively.

5. CONCLUSION

We have presented the formulation and implementation of an
algorithm called SSMEM that we developed as a tool for astro-
nomical Fourier-transform imaging at multiple frequencies
over a broad spectral range. The present formulation of the
SSMEM, when compared with the initial formulation of KHG97,
has a number of improvements as follows: (1) Computation of
spectral entropy is refined by introducing continuous spatial res-
olution in the x-y plane, which is optimized for each frequency
for the best use of the frequency variation. (2) The Lagrangian
multipliers are also set for individual frequencies, and the flux
constraint is introduced for the reason that Cornwell & Evans
(1985) raised. These two treatments ensure a map at each fre-
quency that is consistent with the observations. (3) The conver-
gence criteria are set for each object function at each frequency
in order to ensure that the correct solution is found. Two quan-
tities yet remain ad hoc in the present SSMEM formulation: the
spectral entropy and the dimensionless parameter, �, introduced
to lever the spectral entropy. We have justified the spectral
entropy with a practical need, namely, its functioning as com-
plementing the conventional MEM in multifrequency imaging
through information exchange across frequencies.We suggest a
modest value of � � 1for adequate balance between the roles of
spatial and spectral entropies because the spectral entropy itself

is designed to make a contribution to the solution similar to the
one made by the spatial entropy. The optimal value of � may,
however, depend on the data. For this problem, it is a good
practice to check the relative contribution of the spectral and
spatial entropies to the resulting SSMEM maps by comparison
with the MEM maps.
In our test with an uneven and sparse array equipped with 20

frequencies across 1–18 GHz and amodest amount of noise, the
SSMEM maps are found to be closer to the true model than the
MEM maps in regions where u-v information is insufficient.
Otherwise similar map qualities are obtained, but the SSMEM
reproduces the local spectra of the model better than the MEM.
Therefore, the advantage of the SSMEM over the MEM is more
obvious in terms of the spectral reconstruction. We expect that
such merit of the SSMEM will remain even when u-v coverage
is significantly better than that adopted in the present study. The
reason is that there is always irreducible noise in data, and a
systematic treatment of the frequency-dependent constraints
will improve reconstruction of local spectra. In addition, wide-
band imaging spectroscopy with a fixed array will inevitably
encounter the problems of inadequate u-v coverage at some fre-
quencies (unless the source variation with frequency scales in
proportion to the wavelength) and different-sized resolution ele-
ments involved with each map. Our results demonstrate that this
problem can be addressed by the SSMEM, in that the spectral
entropy plays the necessary role of communicating across fre-
quencies. The primary application of the present algorithm could
be astronomical imaging spectroscopy in which the imaging is
done with an interferometer array at multiple frequencies. Good
examples are the solar radio interferometric arrays designed to
operate at a wide range of frequencies, such as the Owens Valley
Solar Array (Hurford et al. 1984) and the Frequency-Agile
Solar Radiotelescope (Bastian 2003; White et al. 2003).
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APPENDIX

THE GRADIENT OF THE OBJECT FUNCTION IN SSMEM

In order to maximize the object function J we require analytical expressions for :J and ::J . We here show only those of the
spectral entropy term because those of the other terms (spatial entropy, �2 constraint, and the flux constraint) are well known. The first
derivative of the spectral entropy is

@

@Tjk

X
k 0

Sk 0

" #
¼ @

@Tjk
�
X
j 0k 0

�j 0k 0 ln
�j 0k 0

mj 0k 0e

� �" #
¼ �

X
j 0k 0

ln
�j 0k 0

mj 0k 0

� �
@�j 0k 0

@Tjk
: ðA1Þ

The last term is further expanded to

@ �j 0k 0

@Tjk
¼ � 	jj 0	kk 0 � aþk 0R

þ
j 0k 0jk

Tj 0k 0
� �
T̃þ
j 0k 0

� a�k 0R
�
j 0k 0jk

Tj 0k 0
� �
T̃�
j 0k 0

" #
: ðA2Þ
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Here the upper, plus sign is for Tj 0k 0 > hTj 0k 0 i and the lower, minus sign is for Tj 0k 0 < hTj 0k 0 i. If Tj 0k 0 ¼ hTj 0k 0 i then the gradient
vanishes, making the gradient continuous.

The second derivative of the spectral entropy is

@2S

@T2
jk

¼� @

@Tjk

X
j 0k 0

ln
�j 0k 0

mj 0k 0

� �
@�j 0k 0

@Tjk

" #

¼�
X
j 0k 0

1

�j 0k 0

@�j 0k 0

@Tjk

� �2

þ ln
�j 0k 0

mj 0k 0

� �
@2�j 0k 0

@T2
jk

" #
; ðA3Þ

where the last term becomes

@ 2�j 0k 0

@T 2
jk

¼�
@2 Tj 0k 0
� �
@T 2

jk

¼� Tj 0k 0
� �

aþk 0 a
þ
k 0 � 1

� 	 Rþ
j 0k 0jk

T̃þ
j 0k 0

 !2

þ a�k 0 a�k 0 � 1
� 	 R�

j 0k 0jk

T̃�
j 0k 0

 !2
2
4

3
5: ðA4Þ
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