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1. Introduction

My first project at Goddard Space Flight Center (GSFC) involved testing a new Maxi-

mum Entropy Method (MEM) with RHESSI data. The algorithm was developed by Su-Chan

Bong – in his thesis, he describes the Spatio-Spectro Maximum Entropy Method (SSMEM)

which works for both imaging and spectroscopy – and Jeongwoo Lee, who adapted the tech-

nique for RHESSI imaging and named the altered code MEM NJIT. Schmahl et al. (2007)

showed how this imaging algorithm, which was developed for data from the Owens Valley

Solar Array (OVSA), performed with RHESSI visibilities.

I’m too lazy to reference papers correctly in something that I have no intention of

publishing. From now on, I’ll refer to the Narayan and Nityananda (1986) paper enti-

tled,“Maximum Entropy Image Restoration in Astronomy,” as NN, and the Cornwell and

Evans (1984, “A Simple Maximum Entropy Deconvolution Algorithm”) as CE. The Bong et

al. (2004, ApJ and JKAS) papers are also useful for understanding the SSMEM program,

but I do not refer to them beyond this intro. Bong’s SSMEM is an extension of the CE

MEM.

Though Ed Schmahl and I tested MEM NJIT and confirmed its viability with RHESSI

data in Schmahl et al. 2007 (leading to its implementation into the RHESSI software), there

were some lingering issues that proved to be a cause for concern for some on the team. I’ve

diagnosed a couple of problems and devoted a section to each in these MEMoirs in an effort

to explain why they are happening and what, if anything, can be done to address them.

2. Input Flux

As NN allude to in their paper, MEM is “supplemented by prior knowledge about the

image” which, in their case, is positivity of intensity (pixel fluxes greater than zero). CE

take it one step further by adding a constraint to their objective function:
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F =
∑

i

bi = Fobserved, (1)

where we just sum over all pixels, so the flux in the map should be consistent with the

flux we observe. Fobserved is obtained from the data and used as an input into MEM NJIT.

Originally, we set the input flux to the maximum amplitude of the input visibilities

after (arbitrarily) eliminating outliers. This method of flux determination is automatically

achieved in the RHESSI code. Resulting maps seem to have a lot of low level (∼ 1%)

flux distributions (one could say extended sources), and since all pixels in MEM maps are

positive, the flux when integrating over the entire map is relatively large, though consistent

with the input flux. By “relatively large,” I’m referring to MEM NJIT flux integrated over

the entire map compared with Pixon flux integrated over its entire map. I’ve investigated a

couple of cases – an X class flare from March 18, 2003, and a C class flare from September 20.

For March 18, 2003, our “default” MEM NJIT input flux is ∼28.1, which results in a total

integrated map flux of ∼28.4. A Pixon map for this event yields a total map flux of 17.35.

As for the September 20 event, the default flux is ∼45.45, which produces a map with a

total flux of ∼46.8. All flux units are photons cm−2 s−1. All these numbers are summarized

in the tables below.

Another approach to flux is to use what is tagged in the RHESSI visibility structure

arrays as “totflux” and documented as the DC term of a given visibility. Physically, one can

look at this as the unmodulated RHESSI photon flux seen at a given detector. Graphically,

it represents the y-offset of the sinusoid that is fitted in the visibility calculation. Ideally,

the DC term averaged over all roll bins in a given detector is the same for each detector. To

achieve uniform total fluxes, though, correction factors need to be applied to every visibility.

The correction factors can be determined and applied to the bag of visibilities with the SSW

program hsi vis normalize.pro. Once the visibilities are normalized,

DCall =
9∑

i=1

DCi/9, (2)

where DCi is the DC term for the ith detector (averaged over all roll bins for the

detector) and we sum from 1 to 9 because that’s how many subcollimators are on RHESSI.

Since, after visibility normalization the average DC term for each detector should be equal

to that of any other detector, DCall should be equal to any DCi.

Below is a table of source fluxes for the different input flux cases into MEM NJIT, and

for comparison, from Pixon. Also included are total flux of the sources defined by the user,
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the flux for the entire map (integrated over all pixels), and the “noise” level, which is the

map flux minus the total source flux. Again, all fluxes are in units of photons cm−2 s−1.

We’ll start with the September 20, 2002 event:

Sep. 20, 2002 Source 1 Source 2 Total Source Map Total Noise

09:26:08-09:27:08 Flux Flux Flux Flux

25-50 keV

MEM NJIT Default 14.28 7.75 22.03 46.79 24.76

MEM NJIT TOTFLUX 13.93 7.56 21.50 31.80 10.30

Pixon 10.16 6.44 16.60 33.30 16.70

Table 1: nj influx = default ≈ 45.4; nj influx = DCall ≈ 31.9

So for this event, the two MEM cases yield similar results for the two sources, but not

the total map flux. Similar source fluxes result despite a default flux that is ∼1.5 times the

input DC term. The “extra” flux is thrown into the background at low levels and contributes

to the higher noise level. Presumably, telling MEM NJIT to converge on a map with a flux

close to the DC term will return a less noisy map, and one that is even closer photometrically

to Pixon.

The same study can be carried out for the X-Class flare from March 18, 2003:

Mar. 18, 2003 Source 1 Source 2 Total Source Map Total Noise

12:14:00-12:15:00 Flux Flux Flux Flux

50-100 keV

MEM NJIT Default 6.56 5.69 12.25 28.36 16.11

MEM NJIT TOTFLUX 6.24 5.63 11.87 18.39 6.52

Pixon 7.66 6.49 14.15 17.35 3.20

Table 2: nj influx = default ≈ 28.1; nj influx = DCall ≈ 17.9

So we’re left with similar results – noise levels that are ∼2-3 higher in MEM NJIT maps

given the default flux value than in MEM NJIT maps with an input flux equal to the average

DC component, though total source flux is within 5%. It looks like we need a new default

flux.

For a qualitative look, I’ve included color images for the March 18 event in Figure 1.

The images were plotted with IDL colortable number 5 (zero offset) and a gamma

correction of 4. The resulting colortable was reversed in the plots so the darker pixels are more
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(a) MEM NJIT Default (b) MEM NJIT TOTFLUX (c) Pixon

Fig. 1.— Image comparison

intense. Gamma correction was applied simply to highlight the lower level flux contributions.

Contour levels are 1% and 10% of the map maximum. While the flux contributions are still

more diffuse in the MEM NJIT images than in Pixon, the pixels in Figure 1(b) are fainter

than those in Figure 1(a). In addition, the color scales for Figures 1(b) and 1(c) are a better

“match.” For example, the maximum for the map in Figure 1(b) is only 50% higher than the

Pixon maximum, whereas the Figure 1(a) maximum is more than twice as much as Pixon’s.

3. Super-resolution

MEM NJIT has an inherent property, as do all Maximum Entropy Methods, of super-

resolution – going beyond the resolving power of an instrument. This super-resolution phe-

nomenom exists because of the nature of Fourier Imagers, whether they be Radio Interfer-

ometers or rotating subcollimators that have been used with Yohkoh and RHESSI. In any

case, the UV coverage with these instruments is limited and Fourier inter/extrapolation is

required to get anything beyond the dirty map. Another reason for super-resolution is the

fact that any MEM is nonlinear with the a priori knowledge of positivity, i.e. all pixels in a

map have intensities that are greater than zero. (NN)

Fourier extrapolation leads to visibilities being “measured” at UV coordinates beyond

the resolution of a given instrument. In radio jargon, visibilities are measured at higher

spatial fequencies than what is allowed by the instrument. Positivity opens the door to

nonzero weighting of these visibilities. One might ask why this is so, and the reason is the

relationship between visibilities and maps.
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Mathematically, visibilities can be computed from a map with the equation Vj = Aje
iφj ,

where Aj is the amplitude of one visibility and the phase φj is a vector product of the Fourier

coordinates and the Cartesian coordinates. More precisely, since one visibility is measured

at each UV point (or at each roll angle θj, since θj = arctan
vj

uj
), and for that roll angle the

visibility is summed over the entire map, the visibility vector component can be expressed

as:

Vj =
∑
m

∑
n

Fmne
2πi(uj∗xm+vj∗yn), (3)

with Fmn being the flux of one pixel at position (m, n). xm and yn are just Cartesian

points of a map (so the visibility component is summed over all x pixels and y pixels). For

RHESSI, the Fourier (UV) coordinates lie along circles with radius ki = 1
pitchi

, with pitchi

corresponding to the angular resolution of the ith detector. The range of ki is from 1
183.323

≈
0.005 arcsec−1 to 1

2.26
≈ 0.4 arcsec−1. Values for ki can then be used for the individual UV

values along the ith UV circle:

uj = ki cos θj, vj = ki sin θj (4)

θj is the aforementioned roll angle, which is just the orientation of the instrument, so u

and v values are instrument-dependent.

Fourier extrapolation will extend the UV circles beyond the largest RHESSI circle, thus

contributing to the complex exponential of equation 3 , while positivity keeps Fmn, well,

positive. Thus, we have nonzero values for Vj beyond the allowed spatial frequencies of the

instrument, providing higher pseudo-resolution, which we call super-resolution. The result

is a MEM image that is comparable to a Clean image using data from an adjacent array

configuration with higher resolution (CE), or for RHESSI, adding a finer grid.

3.1. Analysis With a Simulated Source

Consider a Dirac δ-function source – infinite flux that is infinitely small in width. If

a map was composed of only the δ-function, amplitudes of calculated visibilities would be

constant over all frequency space. Computational constraints in IDL inhibit the use of a

δ-function (because of the infinite flux), but we can construct a point source of a finite flux

and expect similar results. The model source map is a map of pixels with zero flux except

for one pixel near the center. Model visibility amplitudes, calculated with Equation 3, are
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displayed in Figure 2 – they form a straight line over all detectors until the resolution of

the detector approaches the pixel size. Pixel sizes for this map are 0.1”, far beyond the

resolution of RHESSI, so we only see a straight line.

Fig. 2.— Model visibilites for the point source and MEM NJIT output, both calculated with

Equation 3. Here, finer grids have lower indices.

When running MEM NJIT, these model visibilities are used as input, as are the flux

of the pixel (which is defined by the user; in my case, I chose a flux of 100 photons cm−2

s−1), and the Fourier components. My UV coordinates were uniformly distributed (i.e. equal

angular spacing of say, 10 degrees, between UV points) onto 9 circles with the aforementioned

radii, ki. The resulting MEM NJIT solution, Figure 3, is almost a point source (if a 2D

Gaussian is fitted to the MEM model, it’s y axis, σ2, is slightly larger than it’s x axis, σ1 –

something like 0.8 pixels to 0.7 pixels) with a flux less than 1% larger than the theoretical,

user defined flux (MEM’s map returns a flux of 100.4). Model visibility amplitudes of the

MEM NJIT map overplotted in Figure 2 exhibit a little bit of modulation in the finer grids

since the source is a very small Gaussian, and the minimum amplitude is 97.3. The reason

for the divergence is the uncertainty in the visibilities, which by default is the MEM NJIT
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Fig. 3.— Point source map and shaded surface

tolerance (0.03 by default) multiplied by the input visibility amplitudes (all equal to 100),

so there is an uncertainty of ±3 photons cm−2 s−1 at each roll angle.

Now onto the super-resolution: to prove Fourier extrapolation is occuring in MEM NJIT,

I choose to just calculate model visibilities from the MEM NJIT map as if RHESSI had grids

with finer resolutions, i.e. I’m adding larger UV circles to my sample. The goal is to see

if the visibility amplitudes drop off with finer resolutions (of which RHESSI isn’t capable),

and if they do, how quickly they drop. Since higher spatial frequencies are expected to be

weighted less, possible trends could be exponential decay or something like a “Gaussian drop

off.”

Indeed, I have observed the Gaussian drop off starting at around the 2nd grid. Again,

the change in fluxes measured by RHESSI detectors is still within the default uncertainty.

Significant drop off starts to happen once we add one or two more grids with finer resolution.

Figure 4 illustrates the drop off with added detectors. Note we can only add detectors that

have resolutions greater than the pixel size. Full disclosure: Figure 4 is not a plot of every

amplitude at every roll angle. Rather, each data point represents the average amplitude of

the visibilities in a given detector (amplitudes for an elliptical Gaussian will oscillate around

the average).
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Fig. 4.— Average amplitudes of model visibilities, which include Fourier extrapolation. The

coarsest grids are plotted first (flipping the X axis from Figure 2). Resolution can only be

extended to ≈0.15” since the pixel size of the map is 0.1”. Subcollimator indices <1 have

angular resolutions less than RHESSI’s finest grid pair.


