Summer School 2006 High Energy Solar Physics

Thermal Radiation

Brian R. Dennis NASA Goddard Space Flight Center Greenbelt MD USA

Kenneth J. H. Phillips

University College Mullard Space Science Lab. London, UK

Monday, June 19, 2006, 11 – 12:30 EDT

Outline

- Introduction
- Thermal continua & line emission
- □ Atomic data bases CHIANTI v. 5.2
- □ TRACE movie
- □ FIP effect
- □ Flare Fe XXV emission lines
- DEM
- □ Blue shifts & line broadening
- □ Flare energetics
- Future Possibilities

Introduction

Text Books

- Aschwanden Physics of the Solar Corona
- Emslie and Tandberg-Hansen - Solar Flare Physics
- Harra & Mason Space Science
- Herzberg Atomic Spectra & Structure
- Semat Introduction to Atomic Physics (~1950)
- Thermal Radiation
 - relevance to high energy solar physics
 - Optical, UV, EUV, X-rays
 - Lines & continua
 - Radio not covered

Why study thermal radiation?

Negatives

- Can't differentiate between energy release processes All energy release processes produce heat.
- Nonthermal products become thermal.
- Line spectra complicated.

Positives

- Line spectra give lots of information.
- Provides context information for high energy processes.
 - □ Images, spectra, light curves.
 - Morphology, temperature, density, abundances.
 - Magnetic field from Zeeman splitting Optical lines in photosphere IR lines in corona.
- Total energy in thermal plasma
- Total radiated energy
 - □ The best measure of the total flare energy.

Thermal Radiation

- Visible Radiation
 - Temperature structure of atmosphere
 - Element abundances (Fraunhofer lines, "curve of growth analysis.")
 - Lower chromosphere (Ha, Ca II H & K optically thick, cores emitted in chromosphere)
 - Magnetic field
- UV & EUV
 - Chromosphere (H Ly-**a**, He I & II)
 - Transition region & corona (1600, 171, 195 Å)
- Soft X-rays
 - Active regions
 - Flares
- Radio

Intensity & Flux

Intensity & Flux

- Specific Intensity of Source
 - Units erg cm⁻² s⁻¹ [keV/erg/Hz/cm]⁻¹ ster⁻¹
 - Energy emitted by source per unit area of source, time, photon parameter, & solid angle.
- □ Flux of photons from source detected in space
 - Units photons cm⁻² s⁻¹ [keV/erg/Hz/cm]⁻¹
 - Number of photons detected per unit detector area, time, & photon energy.
- □ Total rate of energy emitted by source
 - Units erg s⁻¹ [keV/erg/Hz/cm]⁻¹
 - = Flux x 2π D²
 - D = distance between source and detector (1 AU)
 - Assumes isotropic emission over upward hemisphere.

Solar Spectrum

8

Black-Body Radiation

- □ Equilibrium between emission & absorption
 - Applies to photosphere

Kirchhoff's Law: $\epsilon_{\nu} = n_{\nu}^2 \alpha_{\nu} B_{\nu}(T)$

- - emission coefficient (erg s⁻¹ cm⁻³ Hz⁻¹ rad⁻¹)
- α absorption coefficient (erg s⁻¹ cm⁻³ Hz⁻¹ rad⁻¹)
- *n* refractive index of the medium
- B(T) universal brightness function at temperature T (erg s⁻¹ cm⁻² cm⁻¹ steradian⁻¹)
- v frequency (Hz)

Planck's Law Blackbody Brightness vs. λ (or v) and T

$$B_{\lambda}(T) = \frac{2hc^2 n_{\nu}^2}{\lambda^5} \frac{1}{\left[\exp\left(hc/\lambda k_B T\right) - 1\right]}$$

B(T) – Planck function (erg s⁻¹ cm⁻² cm⁻¹ steradian⁻¹)

$$h - Planck's constant = 6.63 \ 10^{-27} erg s$$

 ν – frequency in Hz

$$\lambda$$
 – wavelength in cm

- c velocity of light = 3.0 10¹⁰ cm s⁻¹
- $_{B}^{k}$ Boltzmann's constant = 1.38 10⁻¹⁶ erg K⁻¹
- T temperature in K

Black-Body Radiation Planck's Function - $B_{\lambda}(T)$

Planck's Function - $B_{\lambda}(T)$

Wien Displacement Law

Wavelength at which B_{λ} is maximum

$$\lambda_{max} = \frac{0.2898}{T(\mathrm{K})} \quad (\mathrm{cm})$$

Stefan-Boltzmann Law

Total flux - all wavelengths over the visible hemisphere

$$\pi B(T) = \pi \int_0^\infty B_\lambda(T) d\lambda = n_\nu^2 \sigma T^4$$

 σ - Stefan-Boltzmann constant = 5.67 10⁻⁵ erg s⁻¹ cm⁻² K⁻⁴

Planck's Law Approximations

Short Wavelengths (UV, X-rays)

Wien's Law
$$B_{\nu}(T) = \frac{2h\nu^3 n_{\nu}^2}{c^2} \exp\left(-\frac{h\nu}{k_B T}\right)$$

 k_B – Boltzmann's constant = 1.38 10⁻¹⁶ erg K⁻¹

Long Wavelengths (Radio)

Rayleigh-Jeans Law
$$B_{\nu}(T) = \frac{2\nu^2 k_B T n_{\nu}^2}{c^2}$$

LTE Local Thermodynamic Equilibrium

- Maxwellian velocity distribution Mean energy = 3/2 k T per particle f(v) = n (m/2pk_BT) 4pv² exp(-mv²/2k_BT) particles cm⁻³ (cm s⁻¹)⁻¹
- Applies in photosphere
- Ionization equilibrium

Saha Equation
$$\frac{N_k}{N_0} = \frac{2}{n_e} \frac{(2\pi m_e k_B T)^{3/2}}{h^3} \frac{g'_k}{g_0} \exp\left(-\frac{\epsilon_k}{k_B T}\right)$$

Fraction of ions in k state of ionization

6/16/2006 11:13 AM

Brian Dennis - Thermal Radiation

Chromosphere & Corona

Chromosphere & Corona

Not black-body

- Optically thin in EUV & X-rays
- Line emission from H, He, ionized metals, etc.
- Not LTE
- Chromosphere partially ionized
- Corona is fully ionized

Principal Radiations

Continuum Emission

- Free-free emission thermal bremsstrahlung
- Free-bound emission radiation recombination
- Two-photon emission
- Line Emission
 - Bound-bound transitions in atoms & ions
- Scattered Radiation
 - Thompson scattering of photospheric emission (→ LASCO images)

Free-Free Emission Bremsstrahlung

Electron in hyperbolic orbit

Free-Free Emission Thermal Bremsstrahlung

Photon Spectrum

$$F(\epsilon) \approx 8.1 \times 10^{-39} \int_V \frac{\exp\left(-\epsilon/k_B T\right)}{T^{1/2}} n^2 \ dV$$

Units - keV s⁻¹ cm⁻² keV⁻¹

- \in photon energy = hv
- n electron and ion density
- V source volume

Free-Bound Emission Recombination Radiation

Continuum emission

Spectral edges at atomic energy levels

Two-Photon Continuum

- □ Ion in excited J = 0 state, energy E_1 (J is total angular momentum)
- **D** De-excites to ground state with J = 0, energy E_0
- Single photon cannot be emitted (because photon spin = 1)
- 2 photons with opposite spins can be emitted
- □ Photon energies, $\epsilon_1 + \epsilon_2 = E_1 E_0 \rightarrow \text{continuum}$
- Important for He-like ions
- \Box Lowest excited state is $2^{1}S_{0}$

Thermal Continuum Emission

CHIANTI v. 5.2

Continuum Fractions (CHIANTI V. 5.2)

Coronal abundances & Mazzotta et al. ionization equilibrium

Free-Bound Fraction

Culhane, MNRAS, 144, 375, 1969.

Brian Dennis - Thermal Radiation

Line Emission Hydrogen Atom

Brian Dennis - Thermal Radiation

Quantum Numbers

Principal quantum number п n = 1, 2, 3, 4...K, L, M, N,... Orbital angular momentum $I = 0, 1, 2, 3, 4, 5, \dots$ s, p, d, f, g, h,... where l < n**Electron spin** $S = \frac{1}{2}$ Projected angular momentum $m_1 = 1, 1 - 1, 1 - 2, ... - 1$ Projected electron spin $m_s = \pm \frac{1}{2}$

Electron States

Shell	K	L			
n	1	2			
I	0	0	1		
	S	S	р		
m _l	0	0	-1	0	+1
m _s	±1⁄2	±1⁄2	±1⁄2	±1⁄2	±1⁄2
m	±1⁄2	±1⁄2	-1/2 -3/2	±1⁄2	+1/2 +3/2
Shell	K	L ₁	L ₂		

Spectral Notation Electron Configuration

 \square Electron Configuration = n I^N n - principal quantum number I – orbital angular momentum N - number of electrons in given configuration \Box H ground configuration: 1s (means 1s¹) Neutral Fe ground configuration 1s²2s²2p⁶3s²3p⁶4s²4p⁶ "one 's squared..." Neutral He & Fe XXV ground configuration $1s^{2}$ "one s squared..."

Spectral Notation Atomic or Ionic States

D Specification of ion state = ${}^{2S+1}L_{J}$

- S = vector sum of all electron spins
- 2S+1 = number of possible values of J ("multiplicity")
- L = vector sum orbital angular momentum of all electrons 0,1,2,3,4,5,...

J = vector sum angular momentum of atom

$$= L + S$$

- **\square** Fe XXV ground state = $1s^2 {}^1S_0$ ("one s squared singlet S zero")
- □ Fe XXVI = 1s ${}^{2}S_{1/2}$ ("one s doublet S one half")

Atomic Data Bases

Available Codes

- CHIANTI (v. 5.2)
 - ATOMDB APEC/APED Astrophysics Plasma Emission Database and Code http://cxc.harvard.edu/atomdb
- MEKAL (Mewe-Kaastra-Liedahl) semi-empirical
- SPEX (v. 2, Kaastra at sron.nl) includes MEKAL

Parameters

- Temperature 10³ 10⁸ K
- Photon wavelength/frequency/energy
- Density
- Abundances
- Ionization equilibrium

Data Bases Compared (2003)

Brian Dennis - Thermal Radiation

In SSW/packages or stand-alone
GUI (type ch_ss in IDL)
IDL command-line interface
Great users guide!
Now used in RHESSI OSPEX

CHIANTI is a collaborative project involving NRL (USA), RAL (UK), and the following Universities: College London (UK), of Cambridge (UK), George Mason (USA), and of Florence (Italy).

Flares High Temperature Emissions

- Highest temperature plasmas tell most about the energy release process.
- Produced by
 - Direct heating in corona
 - and/or
 - Indirect heating via nonthermal particles \rightarrow chromospheric evaporation
TRACE Spectral Bands

Wavelength (Å)	Emission	Bandwidth (Å)	Temperature (K)
171	Fe IX/X	6.4	$1.6 - 20 \times 10^5$
195	Fe XII/XXIV	6.5	$5.0-20 \times 10^5$,
			$1.1 - 2.6 \times 10^7$
284	Fexv	10.7	$1.25 - 4.0 \times 10^{6}$
1216	ΗΙΔα	84	$1.0 - 3.0 \times 10^4$
1550	CIV	30	$6.0-25 \times 10^4$
1600	UV cont, C I, Fe II	275	$4.0 - 10 \times 10^3$
1700	Continuum	200	$4.0 - 10 \times 10^3$
5000	White light	broad	$4.0-6.4 \times 10^{3}$

6/16/2006 11:13 AM

TRACE & EIT 171 Å Filter Response

Phillips et al. ApJ, 626, 1110, 2005.

TRACE & EIT 195 Å Filter Response

Phillips et al. ApJ, 626, 1110, 2005.

RHESSI – EIT - TRACE Movie

X1.5 Flare on 21 April 2002

Click to show movie

High-Temperature Component

Bastille Day Flare 14 July 200?

A&B – hot spine

- T ~ 15 MK

- needs continuing energy input.

TRACE 195Å 10:30:50

TRACE 195Å 10:34:05

TRACE 171Å 10:31:02

TRACE 171Å 10:33:21

SXT Be 10:28:09

SXT Be 10:31:01

6/16/2006 11:13 AM

FIP Effect

- Magnetic and/or electric fields move ions but not neutrals.
- Ions dragged up into corona from chromosphere/T minimum/photosphere.
- □ Consequently, low FIP ions
 - FIP < 10 eV
 - Fe, Ni, K, Na, Ca, Al, Mg, Si, ...
 - Preferentially moved to corona
 - Coronal abundances
 ~4 times photospheric

First Ionization Potential (FIP) Effect

Feldman - Flares

Chromospheric evaporation vs. in situ heating in the corona. Bright source at top of loop.

Fe Ionization-Recombination Equilibrium

Highly Ionized Iron - FeXXV

- □ Ion Fe⁺²⁴
- □ Spectrum FeXXV
- 2 electrons remaining in K shell
- "helium-like"
- □ Ground state
 - $1s^2$ ("one s squared") 1S_0 ("singlet S zero")
- Transitions between levels give emission lines

Phillips, "The Solar Flare 3.8-10 keV X-Ray Spectrum," ApJ, 605, 921, 2004.

Fe-line Complex (~6.7 keV)

□ Fe XXV w line ("resonance line")

- Energy: 6.699 keV
- Wavelength: 1.8508 Å
- Transition: $1s^2 {}^1S_0 1s^2p {}^1P_1$
- Strongest line "quantum mechanically allowed"
- Many satellite lines at lower energy
- Series 1s 2p in presence of other electrons
- From FeXXV FeII Kα doublet
- \Box FWHM ~ 0.1 keV

CHIANTI Spectrum T = 20 MK Coronal Abundances

6/16/2006 11:13 AM

CHIANTI Spectrum Fe Line Complex near 6.7 keV

RHESSI Sensitivity

6/16/2006 11:13 AM

RHESSI Imaging Spectroscopy

Caspi & Lin, 2005

Fe-line Complex ~6.7 keV

6/16/2006 11:13 AM

Fe/Ni-line Complex ~8 keV

Equivalent Width Definition

Fe & Fe-Ni Line Complexes Equivalent Widths vs. Temperature

Fe Line Complexes Equivalent Width vs. Temperature

6/16/2006 11:13 AM

Flux Ratio vs. Temperature Caspi & Lin, 2005

Blue shifts – flare dynamics

SMM/BCS Spectrum Fe XXV lines and satellites

SMM/BCS Fe Spectra

1200

1000

800

W

30 APRIL 1980

 $T_{e}^{fit} = 15.0 \times 10^{6} K$

EM = 1.4x10⁴⁹ cm⁻³

Blue Shifts and Line Broadening

Blue Shifts and Line Broadening

6/16/2006 11:13 AM

Blue Shifts and Line Broadening

- □ Blue shift → upflow velocity 100 300 km s^{-1}
- Unshifted component always dominates why?
- \Box Thermal line broadening \rightarrow T_e
- □ Nonthermal line broadening \rightarrow T_{Doppler}
- $\Box T_{Doppler} T_e \rightarrow plasma turbulence.$

Multithread Model

(Warren, ApJ, 637, 522, 2006.)

- Multithreads heated successively each on a time scale of 200 s.
- Explains lack of 100% blue-shifted component early in flare
- Shorter time scales lead to higher temperatures than observed.

Fig. 8.—Light curves for emission formed at high temperatures for relatively gentle heating (200 s) and impulsive heating (20 s).

Emission Measure Demystified

Photon Flux at Earth

SI(CEM27) - specific intensity for CEM = 10^{27} cm⁻⁵ Flux(CEM27, λ)

- = I(λ) (A_{detector} / D²) / A_{detector} photons cm⁻² s⁻¹ Å⁻¹
- = A_{source} SI(CEM27, λ) / D² photons cm⁻² s⁻¹ Å⁻¹
- = A_{source} 10²⁷ SI(CEM1, λ) / D² photons cm⁻² s⁻¹ Å⁻¹

(Note that the detector area cancels out.)

This corresponds to the flux from a CEM of 10^{27} cm⁻⁵ or a VEM of A_{source} 10^{27} cm⁻³.

Column to Volume EM

VEM of 10^{49} cm⁻³ = CEM x 10^{49} / (A_{source} 10^{27}) $FVEM49(\lambda) = FCEM27(\lambda) \ 10^{49} \ / \ (A_{source} \ 10^{27})$ = $10^{(49 - 27)} D^{-2} SICEM27(\lambda)$ photons cm⁻² s⁻¹ Å⁻¹ Source area cancels out. $D = 1.5 \ 10^{13} \text{ cm}, D^2 = 2.25 \ 10^{26} \text{ cm}^2 = 10^{26.352} \text{ cm}^2$ FVEM49(λ) = 10^(49 - 27 - 26.352) SICEM27(λ) photons cm⁻² s⁻¹ Å⁻¹ = $10^{-4.352}$ SICEM27(λ) photons cm⁻² s⁻¹ Å⁻¹ = 4.45 10-5 SICEM27(λ) photons cm⁻² s⁻¹ Å⁻¹ = SICEM(27^{-4.352})(λ) photons cm⁻² s⁻¹ Å⁻¹ = SICEM 22.648(λ) photons cm⁻² s⁻¹ Å⁻¹ SICEM22.648 is the specific intensity obtained from CHIANTI for CEM = $10^{22.648}$ cm⁻⁵.

DEM Analysis Aschwanden & Alexander, Sol. Phys. 204, 93, 2001

Instrument response (dF/dEM) vs. Temperature

DEM Analysis Aschwanden & Alexander, Sol. Phys. 204, 93, 2001

Normalized G(T) functions

DEM Analysis Aschwanden & Alexander, Sol. Phys. 204, 93, 2001

Bastille Day event – 14 July 2000

Best fit double half-Gaussian DEM model at flare peak.

CORONAS-F

DEM for the active region and the flare 28.12.2001

Markov-Chain Monte Carlo (MCMC) DEM Analysis (Liwei Lin, SAO)

DEM Analysis Limitations

Deal or No Deal! Thermal or Nonthermal

The standard mythology

- Time history
 - Thermal is slow and smooth
 - Nonthermal is fast and impulsive
- □ Spectrum
 - Thermal is exponential
 - Nonthermal is power-law
 - >50 keV is nonthermal
- Image
 - Thermal is coronal & extended
 - Nonthermal is footpoints & compact

Many exceptions!

Energy Dependent Time Delays Aschwanden, 2006, preprint

6/16/2006 11:13 AM

Energy Dependent Time Delays Aschwanden, 2006, preprint

6/16/2006 11:13 AM

Energy Dependent Time Delays Aschwanden, 2006, preprint

Flare Energetics

- □ Sum energies of flare components:
 - thermal plasma
 - nonthermal electrons from X-rays
 - nonthermal ions from gamma-rays
 - turbulent and bulk motions
- Measure total radiated energy over all wavelengths
 - Increase in total solar irradiance

Radiated Energy Losses

Energy radiated from thermal plasma over all wavelengths

 $L_{rad} = EM f_{rad}(T) ergs s^{-1}$

EM – emission measure

T - temperature

 $f_{rad}(T)$ - radiative loss function

Total radiated energy from the flare plasma

$L_{total} = \sum [L_{rad}(t) * Dt] erg$

Sum is over the duration of the flare

CHIANTI Radiative Loss Function

6/16/2006 11:13 AM

Thermal Energy

Thermal energy of plasma

$$U_{th} = 3 n_e V k_B T = 3 k_B T [EM f V_{apparent}]^{1/2} erg$$

 n_e – electron density in cm⁻³

V – volume of emitting plasma in cm³

V_{apparent} – volume from image

f - filling factor (assumed to be 1)

k_B – Boltzmann's constant

T – temperature (from GOES and RHESSI)

 $EM = n_e^2 V - emission$ measure in cm⁻³ (from GOES and RHESSI)

 $V = f V_{apparent} \sim f A^{3/2}$

A - source area from image

Increase in Total Solar Irradiance

X17 flare on 28 October 2003

CME vs Flare Energies Dennis et al. 2006

Future Missions

- Stereo 2006
 - Sun Earth Connection Coronal and Heliospheric Investigation (SECCHI)
 - \Box Coronagraphs 1.1 15 R_{Sun}
 - □ EUV Imager 2 x EIT spatial resolution, N x cadence
- □ Solar B 2006
 - Solar Optical Telescope magnetic fields with 0.2 arcsec resolution
 - Solar X-ray Telescope (SXT) Yohkoh/ST-like 1 arcsec. resolution
 - EUV Imaging Spectrometer (EIS) CDS-like images in TR & corona
- GOES N 2006
 - SXI
- Coronas 2008
 - SphinX Solar Photometer in X-rays (0.5 15 keV, DE<190 eV)
 - EIT look alike
- □ Solar Orbiter 2017?
 - Hard X-ray imager
- Sentinels
 - X-ray imager
 - Gamma-ray spectrometer
- □ Indian 2nd solar spacecraft
 - Soft X-ray imaging spectrometer (SoXIS)

Conclusions

Thermal radiation is useful!

- Morphology
- DEM
- Plasma turbulence from line broadening
- Bulk motions from line shifts
- Abundances
- Magnetic field in corona
- □ Total flare energy