Particle Transport (and a little

Evidence for Energetic Particles

- Particles escaping into interplanetary space
- Hard X-ray emission (electrons)
- Gamma-ray emission (electrons and ions)
- Radio emission (electrons)
- Will focus mostly on electrons in this talk

Bremsstrahlung Process

Required Particle

 Fluxes/Currents/Powers/Energies(Miller et al. 1997; straightforwardly proportional to observed photon flux)
Emission process is straightforward, and so it is easy to ascertain the number of electrons from the observed number of photons!

```
Electrons
        1037 s-1> > 20 keV
        018 Amps
        3\times1\mp@subsup{0}{}{29}\mp@subsup{\textrm{ergs s}}{}{-1}\mathrm{ for 100 s=3 = 1031 ergs}
    Ions
        1035 s-1> > MeV
        10'16 Amps
    2\times1029 ergs s-1 for 100 s=2 =1031 ergs
```


Electron Number Problem

$10^{37} \mathrm{~s}^{-1}>20 \mathrm{keV}$
Number of electrons in loop $=n V \sim 10^{37}$
All electrons accelerated in 1 second!
Need replenishment of acceleration region!

Electron Current Problem

 Steady-state (Ampère):$$
\mathrm{B}=\mu_{0} \mathrm{I} / 2 \pi \mathrm{r} \sim\left(10^{-6}\right)\left(10^{18}\right) / 10^{8}=10^{4} \mathrm{~T}=10^{8} \mathrm{G}
$$

$$
\left(\mathrm{B}^{2} / 8 \pi\right) \mathrm{V} \sim 10^{41} \text { ergs! }
$$

Transient (Faraday):
$\mathrm{V}=\left(\mu_{0} \ell\right) \mathrm{d} / / \mathrm{dt}=\left(10^{-6}\right)\left(10^{7}\right)\left(10^{18}\right) / 10 \sim 10^{18} \mathrm{~V}!!$ So either
(1) currents must be finely filamented; or (2) particle acceleration is in random directions

2n

Accelerated Spectrum

-Predicted spectrum is flat
-Observed spectrum is \sim power law
-Need many concurrent acceleration regions, with range of \mathcal{E} and L

Super-Dreicer Acceleration

- Short-extent $\left(\sim 10^{5} \mathrm{~cm}\right)$ strong ($\sim 1 \mathrm{~V} \mathrm{~cm}^{-1}$) fields in large, thin (!) current sheet

Super-Dreicer Acceleration

- Short $\left(\sim 10^{5} \mathrm{~cm}\right)$ acceleration regions
- Strong ($>10 \mathrm{~V} \mathrm{~cm}^{-1}$) fields
- Large fraction of particles accelerated
- Can accelerate both electrons and ions
- Replenishment and current closure are straightforward
- No detailed spectral forms available
- Need very thin current channels - stability?
(First-order) Fermi Acceleration

Second-order Fermi Acceleration

- Energy gain in head-on collisions
- Energy loss in "overtaking collisions"

BUT number of head-on collisions exceeds number of overtaking collisions
\rightarrow Net energy gain!

Stochastic Fermi Acceleration

 (Miller, LaRosa, Moore)- Requires the injection of large-scale turbulence and subsequent cascade to lower sizescales
- Large-amplitude plasma waves, or magnetic "blobs", distributed throughout the loop
- Adiabatic collisions with converging scattering centers give $2^{\text {nd }}$-order Fermi acceleration (as lone as $v>U!$)

Stochastic Fermi Acceleration

- Thermal electrons have $\mathrm{v}>\mathrm{v}_{\mathrm{A}}$ and are efficiently accelerated immediately
- Thermal ions take some time to reach v_{A} and hence take time to become efficiently accelerated

Electron vs. Ion Acceleration and Transport

- If ion and electron acceleration are produced by the same fundamental process, then the gamma-rays produced by the ions should be produced in approximately the same location as the hard X-rays produced by the electrons

Particle Transport

Cross-section

Coulomb collisions

- $\sigma=2 \pi \mathrm{e}^{4} \Lambda / \mathrm{E}^{2}$;
$-\Lambda=$ "Coulomb logarithm" ~20)
- $\mathrm{dE} / \mathrm{dt}=-\left(2 \pi \mathrm{e}^{4} \Lambda / \mathrm{E}\right) \mathrm{nv}=-(\mathrm{K} / \mathrm{E}) \mathrm{nv}$
- $\mathrm{dE} / \mathrm{dN}=-\mathrm{K} / \mathrm{E} ; \mathrm{dE}^{2} / \mathrm{dN}=-2 \mathrm{~K}$
- $\mathrm{E}^{2}=\mathrm{E}_{\mathrm{o}}{ }^{2}-2 \mathrm{KN}$

Spectrum vs. Depth

- Continuity: $\mathrm{F}(\mathrm{E}) \mathrm{dE}=\mathrm{F}_{\mathrm{o}}\left(\mathrm{E}_{\mathrm{o}}\right) \mathrm{dE}_{\mathrm{o}}$
- Transport: $\mathrm{E}^{2}=\mathrm{E}_{\mathrm{o}}{ }^{2}-2 \mathrm{KN} ; \mathrm{EdE}=\mathrm{E}_{\mathrm{o}} \mathrm{dE}_{\mathrm{o}}$
- $\mathrm{F}(\mathrm{E})=\mathrm{F}_{\mathrm{o}}\left(\mathrm{E}_{\mathrm{o}}\right) \mathrm{dE} / \mathrm{dE}=\left(\mathrm{E} / \mathrm{E}_{\mathrm{o}}\right) \mathrm{F}_{\mathrm{o}}\left(\mathrm{E}_{\mathrm{o}}\right)$
- $\mathrm{F}(\mathrm{E})=\left(\mathrm{E} /\left(\left[\mathrm{E}^{2}+2 \mathrm{KN}\right]^{1 / 2}\right) \mathrm{F}_{0}\left(\left[\mathrm{E}^{2}+2 \mathrm{KN}\right]^{1 / 2}\right)\right.$

Spectrum vs. Depth

$\mathrm{F}(\mathrm{E})=\left(\mathrm{E} /\left(\left[\mathrm{E}^{2}+2 \mathrm{KN}\right]^{1 / 2}\right) \mathrm{F}_{0}\left(\left[\mathrm{E}^{2}+2 \mathrm{KN}\right]^{1 / 2}\right)\right.$ (a) $2 \mathrm{KN} \ll \mathrm{E}^{2}$
$\mathrm{F}(\mathrm{E}) \sim \mathrm{F}_{\mathrm{o}}(\mathrm{E})$
$\mathrm{F}(\mathrm{E}) \sim\left(\mathrm{E} /[2 \mathrm{KN}]^{1 / 2}\right) \mathrm{F}_{\mathrm{o}}\left([2 \mathrm{KN}]^{1 / 2}\right) \sim \mathrm{E}$
Also,
$v f(v) d v=F(E) d E \rightarrow f(v)=m F(E)$

Return Current

- $\mathrm{dE} / \mathrm{ds}=-\mathrm{e} \mathcal{E}, \mathcal{E}=$ electric field
- Ohm's Law: $\mathcal{E}=\eta \mathrm{j}=\eta \mathrm{e} \mathcal{F}, \mathcal{F}=$ particle flux
- $\mathrm{dE} / \mathrm{ds}=-\eta \mathrm{e}^{2} \mathcal{F}$
- $\mathrm{dE} / \mathrm{ds}$ independent of $\mathrm{E}: \mathrm{E}=\mathrm{E}_{\mathrm{o}}-\mathrm{e}^{2} \int \eta \mathcal{F} \mathrm{ds}$ - note that $\mathscr{F}=\mathscr{F}[\mathrm{s}]$ due to transport and $\eta=\eta(\mathrm{T})$

Return Current

- $\mathrm{dE} / \mathrm{ds}=-\eta \mathrm{e}^{2} \mathcal{F}$
- Penetration depth $\mathrm{s} \sim 1 / \mathcal{F}$

Magnetic Mirroring

- $\mathrm{F}=-\mu \mathrm{dB} / \mathrm{ds} ; \mu=$ magnetic moment
- Does not change energy, but causes redirection of momentum
- Bremsstrahlung emitted $\sim \mathcal{F} \times(1 / \mathcal{F})$ independent of \mathscr{F} !
- Saturated flux limit - very close to observed processes, e.g.
processes, e.g.
- increase in pitch angle reduces flux \mathcal{F} and so electric field strength \mathcal{E}
Penetration depth due to collisions changed

Using Spatially Resolved Hard X-ray Data to Infer Physical Processes

- Electron continuity equation:
$\partial \mathrm{F}(\mathrm{E}, \mathrm{N}) / \partial \mathrm{N}+\partial / \partial \mathrm{E}[\mathrm{F}(\mathrm{E}, \mathrm{N}) \mathbf{d E / d N}]=0$
- Solve for $\mathrm{dE} / \mathrm{dN}$:
$\mathbf{d E} / \mathbf{d N}=-[1 / \mathrm{F}(\mathrm{E}, \mathrm{N})] \int[\partial \mathrm{F}(\mathrm{E}, \mathrm{N}) / \partial \mathrm{N}] \mathrm{dE}$
- So observation of $\mathrm{F}(\mathrm{E}, \mathrm{N})$ gives direct empirical information on physical processes (dE/dN) at work

April 15, 2002 event

Significance of Observed Slope

- Collisions
$\mathrm{dE} / \mathrm{ds} \sim-\mathrm{n} / \mathrm{E}^{\alpha}, \alpha=1$, slope $=1+\alpha=2$
- Observed mean slope $1+\alpha \sim 0.5$

$$
\alpha \sim-0.5
$$

$\rightarrow \mathrm{dE} / \mathrm{ds} \sim-\mathrm{nE}^{0.5} \sim-\mathrm{nv}(? ?)$

