Particle Transport (and a little Particle Acceleration) Gordon Emslie

Oklahoma State University

Evidence for Energetic Particles

Particles escaping into interplanetary space
Hard X-ray emission (electrons)
Gamma-ray emission (electrons and ions)
Radio emission (electrons)

• Will focus mostly on electrons in this talk

Inversion of Photon Spectra

 $I(\varepsilon) = K \int_{\varepsilon}^{\infty} F(E) \sigma(\varepsilon, E) dE$

 $\sigma(\epsilon, E) = \kappa/\epsilon E$

 $J(\epsilon) = \epsilon \ I(\epsilon) = \kappa K \int_{\epsilon}^{\infty} G(E) \ dE$

 $G(E) = -(1/\kappa K) dJ(\epsilon)/d\epsilon$

 $G(E) \sim J(\epsilon)$

Key point!

Emission process is straightforward, and so it is easy to ascertain the number of electrons from the observed number of photons!

Electron Number Problem

$$\begin{split} 10^{17} \, s^{-1} &\geq 20 \; keV \\ Number \; of \; electrons \; in \; loop = nV \sim 10^{17} \\ All \; electrons \; accelerated \; in \; 1 \; second! \\ Need \; replenishment \; of \; acceleration \; region! \end{split}$$

An Acceleration Primer $\mathbf{F} = q\mathbf{E}_{part}; \ \mathbf{E}_{part} = \mathbf{E}_{lab} + \mathbf{v}_{part} \times \mathbf{B}$

• \mathbf{E}_{part} large-scale \rightarrow *coherent* acceleration • \mathbf{E}_{part} small-scale \rightarrow *stochastic* acceleration

runaway tail;

E

Sub-Dreicer Acceleration

- Long (~10⁹ cm) acceleration regions
- Weak (< 10⁻⁴ V cm⁻¹) fields
- Small fraction of particles accelerated
- Replenishment and current closure are challenges
- Fundamental spectral form is flat
 Need large number of current channels to account for observed spectra and to satisfy global
- electrodynamic constraints

Super-Dreicer Acceleration

• Short-extent (~10⁵ cm) strong (~1 V cm⁻¹) fields in large, thin (!) current sheet

Super-Dreicer Acceleration

- Short (~10⁵ cm) acceleration regions
- Strong (> 10 V cm⁻¹) fields
- Large fraction of particles accelerated
 Can accelerate both electrons and ions
- Replenishment and current closure are
 - straightforward
- No detailed spectral forms available
- Need very thin current channels stability?

Stochastic Acceleration

- Accelerates both electrons and ions
- Electrons accelerated immediately
- Ions accelerated after delay, and only in long acceleration regions
- Fundamental spectral forms are power-laws

 If ion and electron acceleration are produced by the same fundamental process, then the gamma-rays produced by the ions should be produced in approximately the same location as the hard X-rays produced by the electrons

Coulomb collisions

- $\sigma = 2\pi e^4 \Lambda / E^2$;
- $-\Lambda$ = "Coulomb logarithm" ~ 20)
- $dE/dt = -(2\pi e^4 \Lambda/E)$ nv = -(K/E) nv
- dE/dN = -K/E; $dE^2/dN = -2K$
- $E^2 = E_0^2 2KN$

Spectrum vs. Depth

- Continuity: F(E) dE = F_o(E_o)dE_o
 Transport: E² = E_o² 2KN; E dE = E_o dE_o
- $F(E) = F_o(E_o) dE_o/dE = (E/E_o) F_o(E_o)$
- $F(E) = (E/([E^2 + 2KN]^{1/2})F_o([E^2 + 2KN]^{1/2})$

Spectrum vs. Depth
$F(E) = (E/([E^2 + 2KN]^{1/2})F_o([E^2 + 2KN]^{1/2})$
(a) $2KN \le E^2$ (b) $2KN \ge E^2$ (c) $2KN \ge E^2$ (c) $(E) \sim F_o(E)$
$F(E) \sim (E/[2KN]^{1/2}) F_0([2KN]^{1/2}) \sim E$ Also, v f(v) dv = F(E) dE \rightarrow f(v) = m F(E)

Return Current

- $dE/ds = -e\mathcal{E}$, $\mathcal{E} = electric field$
- Ohm's Law: $\mathcal{E} = \eta j = \eta e \mathcal{F}, \mathcal{F} = particle flux$
- $dE/ds = -\eta e^2 \mathcal{F}$
- dE/ds independent of E: $E = E_0 e^2 \int \eta \mathcal{F} ds$ - note that $\mathcal{F} = \mathcal{F}[s]$ due to transport and $\eta = \eta(T)$

Return Current

- $dE/ds = -\eta e^2 \mathcal{F}$
- Penetration depth s $\sim 1/{\pmb{\mathcal{F}}}$
- Bremsstrahlung emitted ~ 𝔅 × (1/𝔅) independent of 𝔅!
- Saturated flux limit very close to observed value!

- $F = -\mu dB/ds; \mu = magnetic moment$ Does not change energy, but causes redirection of momentum
- · Indirectly affects energy loss due to other
- $\begin{array}{l} \text{Indexes} \ \text{e.g.} \\ \text{processes, e.g.} \\ \text{-increase in pitch angle reduces flux } \mathcal{F} \text{ and so} \\ \text{electric field strength } \mathcal{E} \end{array}$
- Penetration depth due to collisions changed

Implications for Particle Transport

- · Spectrum at one footpoint (South) consistently harder
- This is consistent with collisional transport through a greater mass of material!

Atmospheric Response

- Collisional heating → temperature rise
- Temperature rise \rightarrow pressure increase
- Pressure increase \rightarrow mass motion - Mass motion \rightarrow density changes
- "Evaporation"

The "Neupert Effect"

- Hard X-ray (and microwave) emission proportional to injection rate of particles ("power")
 Soft X-ray emission proportional to accumulated mass of high-temperature plasma ("energy")
- So, we expect

 $I_{SXR} \sim \int I_{HXR} \; dt$

Using Spatially Resolved Hard X-ray Data to Infer Physical Processes

- · Electron continuity equation: $\partial \mathbf{F}(\mathbf{E},\mathbf{N})/\partial \mathbf{N} + \partial /\partial \mathbf{E} [\mathbf{F}(\mathbf{E},\mathbf{N}) \mathbf{d}\mathbf{E}/\mathbf{d}\mathbf{N}] = 0$
- Solve for dE/dN: $\mathbf{dE/dN} = - \left[1 / \mathbf{F(E,N)}\right] \int \left[\partial \mathbf{F(E,N)} / \partial \mathbf{N}\right] \mathbf{dE}$
- So observation of F(E,N) gives *direct* empirical information on physical processes (dE/dN) at work

Variation of Source Size with Energy • Collisions: $dE/ds \sim -n/E \rightarrow L \sim \epsilon^2$ In general, L increases with ϵ

- (increased penetration of higher energy electrons)
- General: $dE/ds \sim -n/E^{\alpha} \rightarrow L \sim \epsilon^{1+\alpha}$ • Thermal: $T \sim T_o \exp(-s^2/2\sigma^2) \rightarrow L(\epsilon, T_o, \sigma)$
- In general, L decreases with ε (highest-energy emission near temperature peak)

