Nonthermal Hard X-Ray Radiation from Solar Flares: Observations and Models

Gordon D. Holman Laboratory for Solar and Space Physics NASA Goddard Space Flight Center What do we mean by "hard X-rays and "nonthermal radiation"?

- Hard X-rays: 10 keV 300 keV, between soft X-rays and gamma-rays
- Nonthermal radiation: radiation from an electron distribution that is *not locally Maxwellian*

First X-ray Observations

- X-rays first observed from the Sun by Friedman (Naval Research Lab.) with Geiger counters on a V-2 rocket in 1949
- First detection of a solar flare in hard X-rays/γ-rays: 1958 by Peterson & Winckler (Univ. of Minnesota) during a balloon flight from Cuba (1958 *Physical Review Letters*)

First Image of Hard X-ray Footpoints?

Solar Maximum Mission (SMM) Hard X-ray Imaging Spectrometer (HXIS)

Hoyng et al., The Astrophysical Journal Letters, 1981

Spectra from the Solar Maximum Mission Hard X-Ray Burst Spectrometer

Dennis, Solar Physics, 1985

Flare Spectra Obtained with Cooled Germanium Detectors - 1980 Balloon Flight

34 MK "superhot" plasma

Lin et al., *The Astrophysical Journal Letters*, 1981

Double power-law spectra

Lin & Schwartz, *The Astrophysical Journal*, 1987

SMM HXRBS Spectra Indicating a Thermal Component at Low Energies

Kiplinger et al., The Astrophysical Journal, 1989

From an Electron Distribution Function to a Bremsstrahlung Spectrum

 $N_{ph}(\epsilon, E) = nN(E)v\sigma(\epsilon, E)$

 ϵ = photon energy

E = electron energy

Differential cross section $\sigma(\epsilon, E) = d\sigma(\epsilon, E)/d\epsilon$

Electron Flux Distribution Function F(E) = N(E)v electrons cm⁻² s⁻¹ keV⁻¹

$$N_{ph}(ε) = n \int_{ε}^{∞} F(E) σ(ε, E) dE$$

photons s⁻¹ cm⁻³ keV⁻¹

Photon Flux at Detector & Mean Electron Flux

I(ε) = $(1/4\pi R^2) \int_V n(r) \int_{\epsilon}^{\infty} F(E,r) \sigma(\epsilon, E) dE dV$ photons s⁻¹ cm⁻² keV⁻¹

R = 1 AU

 $I(\varepsilon) = (1/4\pi R^2) \int_{\varepsilon}^{\infty} \left[\int_{V} n(r) F(E,r) \, dV \right] \sigma(\varepsilon, E) \, dE$

I(ε) = (1/4πR²) (n)V \int_{ϵ}^{∞} (F(E)) σ(ε, E) dE photons s⁻¹ cm⁻² keV⁻¹

Mean Electron Flux: $\langle F(E) \rangle = (1/\langle n \rangle V) \int_V n(r)F(E,r) dV$

Thick-Target Bremsstrahlung I $I(\varepsilon) = (1/4\pi R^2) \int_{V} \int_{\varepsilon}^{\infty} n(r) F(E,r) \sigma(\varepsilon, E) dE dV$ $I(ε) = (1/4πR^2) \int_x \int_ε^\infty n(x) F(E,x) \sigma(ε, E) dE dx$ For a steady state and E = E(x), electron flux conservation gives $\mathbf{F}(\mathbf{E},\mathbf{x}) d\mathbf{E} = \mathbf{F}(\mathbf{E}_0) d\mathbf{E}_0$ $\mathbf{F}(\mathbf{E},\mathbf{x}) (d\mathbf{E}/d\mathbf{x}) d\mathbf{x} = \mathbf{F}(\mathbf{E}_0) d\mathbf{E}_0$ $\mathbf{F}(E,x) dx = \mathbf{F}(E_0) dE_0 / (dE/dx)$ $I(\epsilon) = (1/4\pi R^2)$. $\int_{\epsilon}^{\infty} \mathbf{F}(\mathbf{E}_{0}) \int_{\mathbf{E}_{0}}^{\epsilon} [n(\mathbf{x}) \sigma(\epsilon, \mathbf{E}) / (d\mathbf{E}/d\mathbf{x})] d\mathbf{E} d\mathbf{E}_{0}$

Thick-Target Bremsstrahlung II

 $I(\varepsilon) = (1/4\pi R^2) \int_{\varepsilon}^{\infty} \mathbf{F}(E_0) \int_{E_0}^{\varepsilon} [n(x) \sigma(\varepsilon, E) / (dE/dx)] dE dE_0$

For collisional energy losses in a fully ionized plasma,

dE/dx = -Kn/E

 $I(\varepsilon) = (1/K4\pi R^2) \int_{\varepsilon}^{\infty} \mathbf{F}(E_0) \left[\int_{\varepsilon}^{E_0} \sigma(\varepsilon, E) E dE \right] dE_0$

Independent of plasma density, n(x)!

Can deduce the injected electron flux distribution, $F(E_0)$ electrons s⁻¹ keV⁻¹

Accelerated Electron Number Flux & Energy Flux

 $dN_{el}/dt = \int F(E_0) dE_0$ electrons s⁻¹

 $dW_{el}/dt = \int E F(E_0) dE_0$ erg s⁻¹

The Bremsstrahlung Cross Section

- Nonrelativistic approximations
 - Kramers: $\sigma(\varepsilon, E) = \sigma_0 / \varepsilon E$
 - Bethe-Heitler:

 $\sigma(\epsilon, E) = (\sigma_0 / \epsilon E) \ln[(E/\epsilon)^{1/2} + (E/\epsilon - 1)^{1/2}]$

 For relativistic, angle dependent, and polarization dependent cross sections, see Koch & Motz, *Reviews of Modern Physics*, 1959, and Haug, *Astronomy & Astrophysics*, 1997. Approximate Results for Power-Law Electron Distributions (Brown, *Solar Physics*, 1971)

- Assume I(E) \propto E^{- δ} (photons s⁻¹ cm⁻² keV⁻¹)
- Thin target: $F(E) \propto E^{-(\delta 1)}$ (electrons cm⁻² s⁻¹ keV⁻¹)
- Thin target: N(E) $\propto E^{-(\delta \frac{1}{2})}$ (electrons cm⁻³ keV⁻¹)
- Thick target: $F(E_0) \propto E_0^{-(\delta+1)}$ (electrons s⁻¹ keV⁻¹)

Spectra from Electron Distributions with a Low-Energy Cutoff

Holman, The Astrophysical Journal, 2003

Spectra from Electron Distributions with a High-Energy Cutoff

Holman, The Astrophysical Journal, 2003

Forward Fit to a RHESSI Flare Spectrum

23 July 2002 00:30:00 - 00:30:20 UT

(Observed Flux – Model Flux) / σ

Best-Fit Model Mean Electron Flux Electron Distribution

Holman et al., The Astrophysical Journal Letters, 2003

Spectral Fits to the 15 April 2002 Flare

Regularized Inversion of the July 23 Spectrum Compared with the Forward Fit Result

Piana et al., The Astrophysical Journal Letters, 2003

Photon Spectra from Theoretical Electron Distributions with "Interesting Features"

Brown et al., The Astrophysical Journal, 2006

Three Inversions and a **Forward Fit** to the **Theoretical** Photon Spectra

BROWN ET AL.

Alternative Emission Mechanisms

- Inverse Compton Radiation
- Synchrotron Radiation
- Inverse (proton-electron) bremsstrahlung
- Electron-electron bremsstrahlung becomes significant at energies above ~100 keV

Anisotropic Electron Distribution

Compton Backscattered Photons (Albedo)

Kasparova et al., Solar Physics, 2005

Partially Ionized Thick Target

Brown, Solar Physics, 1973

Time Delays & Electron Propagation

FIG. 7.—Distribution of measured time delays $\tau = t(25 \text{ keV}) - t(50 \text{ keV})$

Aschwanden et al., The Astrophysical Journal, 1995

Hard X-Ray Polarimetry X4.8 Flare of 23-July-2002

20 - 40 keV Polarization

Model Flare Loop with Cusp

Model Loop in Hard X-Rays

Change with Plasma Density in Loop

Computed Spectra

Energy Deposition

Presentations at the SPD Meeting

- Oral
 - 27.05, Wednesday June 28, 10:50 AM 12:25 PM: Wei Lu
 - X-ray Emission from Flaring Loops: Comparison Between RHESSI Observations and Hydrodynamic Simulations
 - 28.05, Wednesday June 28, 1:30 3:00 PM: Linhui Sui
 Motion of 3-6 keV Nonthermal Sources Along a Flare Loop
- Poster
 - 13.15: Gordon Holman Understanding X-Ray Source Motions in a Solar Flare Loop