SOLAR HIGH ENERGY DATA ANALYSIS

Overview

- Review of gamma-ray and neutron production
- Examples of data
- Observable quantities
- Transport and interaction model and the parameters
- Dependence of the observable quantities on the parameters
- Data analysis approach
- Analysis of the OSSE/CGRO observations of the 1991 June 4 flare
- Analysis of the RHESSI/Integral/Tsuneb observations of the 2003
 October 28 flare

Summary Nuclear Deexcitation Gamma-Ray Lines

Summary Positron Annihilation Line

The line shape is NOT Gaussian!

525

525

Summary Escaping Neutron Spectra

Summary Neutron Capture Line

Summary Pion Decay Emission

Data Samples Gamma-ray Count Spectrum

Data Samples Gamma-ray Count Spectrum

Data Samples Neutron Data

Data Samples Background Spectrum

Data Samples Flare + Background Spectra

Data Samples Difference Spectrum

Data Samples Positron Annihilation Line

High-Energy Solar Flare Observable Quantities

Deexcitation lines

flux time history total fluence line profile (shape & shift)

Escaping neutrons

flux time history at detector (arriving time-dependent KE spectrum) total fluence

Neutron-capture line

flux time history total fluence

Positron annihilation line

flux time history total fluence line profile (shape & Ps continuum)

Pion-decay emission

flux time history total fluence time-dependent spectrum

Analysis of High-Energy Observable Emission

The traditional physics approach: Develop a model for the flare process that can explain the observations with as few physically-based parameters as possible

Transport and interaction model described by a set of parameters relating to conditions at the Sun, $f(p_1, p_2, p_3, ..., p_n)$ Predicted observable quantities Compare with measured observable quantities

Modify parameters $p_1, p_2, p_3, \dots, p_n$

Magnetic Loop Model

• Scattering due to MHD turbulence replenishes loss cone: $\lambda = \frac{\Lambda}{L}$

 $\frac{\Lambda}{L_c}$ (mean free path) (loop half length)

- Mirroring due to magnetic field convergence: $B(h) \propto P(h)^{\delta}$
- Atmospheric model, n(h), T(h)
- Accelerated-particle spectral index, abundances
- ambient abundances
- B perpendicular to solar surface at footpoints

Magnetic Loop Model (cont.) Parameter Summary

acceleration release time history	a _{ion} (t)
spectrum (power-law spectral index)	S
accelerated ion composition	N _i
	acceleration release time history spectrum (power-law spectral index) accelerated ion composition

physical parameters

loop length	L
level of pitch-angle scattering	λ
magnetic convergence	δ
ambient composition	n _i
atmospheric model	n(h)
flare heliocentric angle	θ_{obs}

Consequences of the Transport Model

consider three aspects

of the interacting accelerated ions that are affected by transport and that will subsequently affect the observable quantities

- 1. the time history of the interactions due to transport
- 2. the depth distribution of the interactions
- 3. the angular distribution of the interacting ions

Consequences of the Transport Model

The number of possible parameter combinations is very large

vary one of the parameters while holding the other parameters fixed at standard values:

```
\begin{array}{l} \lambda = 300 \\ \delta = 0.2 \\ L = 11,500 \ \text{km} \\ s = 4 \end{array} Avrett (1981) sunspot region atmosphere accelerated \alpha/p = 0.5
```

We will use production of the ¹²C 4.438 MeV line as an example for discussion. Other nuclear reactions will behave similarly.

Intertacting Ion Angular Distribution

Depth of Interactions

Interaction Time History (instantaneous injection)

Summary of the Dependence of Observable Quantities on the Parameters

Observable	Acceleration Parameter	Physical Parameter
narrow deexcitation line fluences & ratios	$\alpha/\mathrm{p},s$	ambient abundances
narrow deexcitation line shift and shape	$\alpha/\mathrm{p},s$	$\delta, \lambda, \theta_{\rm obs}, n(h)$
narrow deexcitation line time history	$a_{ m ion}(t)$	$\delta, \lambda, L_c, n(h)$
neutron fluence at Earth	$\alpha/\mathrm{p},s$	$\delta, \lambda, \theta_{\rm obs}, n(h)$
neutron arrival time history at Earth	$a_{\rm ion}(t), \alpha/{\rm p}, s$	$\delta, \lambda, \theta_{\rm obs}, L_c, n(h)$
neutron-capture line fluence	$\alpha/\mathrm{p},s$	$\delta, \lambda, \theta_{\rm obs}, n(h),$ ambient ³ He/H
neutron-capture line time history	$a_{\rm ion}(t), \alpha/{\rm p}, s$	$\delta, \lambda, \theta_{\rm obs}, L_c, n(h),$ ambient ³ He/H
511 keV line shape and continuum	$\alpha/\mathrm{p},^{3}\mathrm{He}/$ $^{4}\mathrm{He},s$	$\delta, \lambda, \theta_{\text{obs}}, n(h), T(h), X(h)$
511 keV line time history	$a_{\rm ion}(t), \alpha/p, s$ acc. abundances	$\delta, \lambda, \theta_{\text{obs}}, L_c, n(h), X(h)$
511 keV line fluence	α /p, s , ³ He/ ⁴ He acc. abundances	$\delta, \lambda, \theta_{\mathrm{obs}}, n(h), T(h), X(h)$

Effect of Model Parameters on the Observable Quantities Deexcitation LineYields

 $\alpha + {}^{4}\text{He} \longrightarrow {}^{7}\text{Be}^{*0.429} + n$ $\alpha + {}^{4}\text{He} \longrightarrow {}^{7}\text{Li}^{*0.478} + p$

Effect of Model Parameters on the Observable Quantities Deexcitation Line Shape

Effect of Model Parameters on the Observable Quantities Neutron & Neutron-Capture Line Yields

Effect of Model Parameters on the Observable Quantities Escaping Neutron Spectra

Neutron-capture Line Time History (instantaneous injection)

Effect of Model Parameters on the Observable Quantities Annihilation Line Shapes

Effect of Model Parameters on the Observable Quantities Annihilation Line Depth Distribution

low thresh (³ He radioactive)	θ _{obs} 0 30 60	transmission 0.95 0.95 0.93
high threshold pallation radioactive)	0 30 60	0.61 0.59 0.52
pion threshold	0 30 60	0.15 0.14 0.11

Data Analysis Approach

Problem:

While the number of observable quantities is potentially large, they depend in complex and over-lapping ways on a large number of model parameters.

Solutions:

- 1. For flares that offer a sufficiently-wide range of measured observables, attempt to address all dependences through a systematic analysis approach, starting with observables with the simplest parameter dependences and progressing to observables with more complex dependences.
- 2. For less well-measured flares, determine only a subset of parameters, ignoring the other parameters by fixing them at reasonable values, allowing constraints to be set on the rest. Estimate resulting systematic uncertainties.

Data Analysis of the 1991 June 4 Flare

Data Analysis of the 1991 June 4 Flare Loop Size

White light images of footpoints at 3:40:34 UT

11,500 km < L < 65,000 km

Sakurai et al. 1991

Data Analysis of the 1991 June 4 Flare α/proton Ratio and Spectral Index

use the α - α complex, ¹²C 4.44 MeV, ¹⁶O 6.13 MeV, and ²⁰Ne 1.63 MeV line ratios

Data Analysis of the 1991 June 4 Flare constraints on λ and δ

want to use the line centroid shift of the ¹²C 4.44 MeV line

but the flare occurred at $\theta_{obs} = 74^{\circ}$

Data Analysis of the 1991 June 4 Flare constraints on λ and δ

use the time history of the summed narrow deexcitation lines

Data Analysis of the 1991 June 4 Flare constraints on photospheric ³He/H

data for the 2.223 MeV neutron-capture line remain and the most important parameters have all been constrained except for photospheric ³He/H

³He/H < 4.5 × 10⁻⁵ (3-σ)

using recent measurements of 3 He/H in the solar wind and D/H and 3 He/ 4 He measurements at Jupiter, the bestestimate of photospheric 3 He/H is $(3.7 \pm 0.9) \times 10^{-5}$

Data Analysis of the 1991 June 4 Flare constraints on the high-energy behavior of the accelerated-particle energy spectrum

data for the escaping neutrons remain and can be used to check for consistency

The count rate is overpredicted at early times implying too many high-energy neutrons.

So introduce a high-energy cut off to the accelerated-ion kineticienergy spectrum to compensate.

150 MeV nucleon⁻¹ works well.

Data Analysis of the 1991 June 4 Flare constraints on the high-energy behavior of the accelerated-particle energy spectrum

This does not modify earlier results since those emissions are produced by accelerated ions of energies less than 150 MeV nucleon⁻¹

Effective accelerated ion energies

Data Analysis of the 2003 October 28 Flare

Data Analysis of the 2003 October 28 Flare

Data Analysis of the 2003 October 28 Flare

High Energy Solar Flare Data Analysis

The measurable quantities associated with high-energy solar flares can depend in complex ways on the parameters of the transport and interaction model.

Deriving self-consistent and well-constrained values for these parameters with reliable uncertainties can be difficult.

Success requires flare measurements that cover a wide range of the observables and an analysis procedure that takes best advantage of their different parameter dependences.

If a flare dataset cannot support such a full analysis, care must be taken to estimate the additional systematic uncertainties to account for the effects of parameters that have not been explicitly addressed.