SOLAR HIGH ENERGY EMISSION THEORY

γ -ray and Neutron Production in Solar Flares

Yohkoh

RHESSI

Products of Accelerated Particle Interactions

Products of interactions

e⁻⁻: X- and γ -ray bremsstrahlung

ions: excited nuclei

radioactive nuclei

neutrons

 π^+, π^-, π^0

unlike atomic processes, nuclear reactions are **not** sensitive to the ambient environment temperature, density or charge state

Observable emission

excited nuclei \rightarrow prompt γ -ray line radiation radioactive nuclei $\rightarrow \begin{cases} \text{delayed } \gamma\text{-ray line radiation} \\ e^+ \rightarrow \gamma_{511} & \text{continuum} \end{cases}$ neutrons $\rightarrow \begin{cases} \text{escape into space} \\ \text{capture on H} \rightarrow \text{d} + \gamma_{2.223} \end{cases}$ $\pi \rightarrow \gamma \text{ (decay continuum, e}^{\pm} \text{ bremsstrahlung, } \gamma_{511} \text{)}$

some of these observables are sensitive to the ambient environment temperature, density or charge state

Calculations of High-Energy Observable Emission

The traditional physics approach: Develop a model for the flare process that can explain the observations with as few physically-based parameters as possible

Yield calculation

Thick target yield for a particular nuclear reaction from an ion with energy $E_0 \text{ (MeV nucleon^{-1}):}$ $Q(E_0) = n \int_0^{E_0} dE \frac{\sigma(E)}{dE/dl(E)} P(E_0, E)$ energy loss rate due to Coulomb interactions
total nuclear cross section $P(E_0, E) = exp \left[-n \int_E^{E_0} \frac{\sigma_N(E')}{dE/dl(E')} dE' \right]$

> Thick target yield from a distribution of ions with an initial-energy spectrum $dN(E_0)/dE$ (MeV nucleon⁻¹)⁻¹:

$$Q = \int_0^\infty dE_0 \ \frac{dN}{dE} (E_0) \ Q(E_0) = n \int_0^\infty dE_0 \ \frac{dN}{dE} (E_0) \ \int_0^{E_0} dE \ \frac{\sigma(E)}{dE/dl(E)} P(E_0, E)$$

Reaction Cross Section

Cross section differential in secondary energy E_s and secondary direction

Cross section differential in secondary energy E_s

Total cross section

 $\sigma(E_0)$

Evaluation of Nuclear Reaction Cross Sections

CHALLENGE: lons in solar flares are accelerated over a very broad range of energies, from <1 MeV nucleon⁻¹ to more than a GeV nucleon⁻¹

- Cross section measurements are obtained from accelerator experiments
- No one accelerator covers the entire energy range; each covers only a fraction of the full range
- Some energy ranges are not covered at all
- · Cannot rely solely on measurements

Evaluation of Nuclear Reaction Cross Sections (cont.)

SOLUTION: Need to include theoretical evaluations of cross sections to extend the energy coverage

- Nuclear physics theory
 - nuclear reaction codes (e.g., EMPIRE, TALYS) use different calculation schemes for different targets and energy ranges
 - e.g., heavy target/low energy \rightarrow 2-stage interaction through "compound nucleus" high energy \rightarrow 2-body nucleon-nucleon interaction

• Empirical rules

 e.g., 2-particle product at high energy → exponential decay at high energy multi-particle product (spallation) → plateau at high energy similar reaction & similar target should exhibit similar energy dependence

Evaluation of Nuclear Reaction Cross Sections (cont.)

Final evaluated cross section is based on a combination of measurements, nuclear reaction theory, and empirical rules.

Improvements in our knowledge of the cross sections have been a continuous process since the 1980s.

Improvements in measurements of solar flares continue to demand further improvements.

Deexcitation Lines Ramaty, Kozlovsky & Lingenfelter 1979, ApJS, 40, 487 Kozlovsky, Murphy & Ramaty 2002, ApJS, 141, 523 Tatischeff, Kozlovsky, Kiener & Murphy, 2006, ApJ, in press

Positrons Kozlovsky, Lingenfleter & Ramaty 1987, ApJ, 316, 801 Kozlovsky, Murphy & Share 2004, ApJ, 604, 892

Neutrons Hua, Kozlovsky, Lingenfelter, Ramaty & Stupp, 2002, ApJS, 140, 563

High Energy Observable Emission

nuclear deexcitation gamma-ray lines

positron annihilation line

escaping neutrons

neutron capture line

pion decay emission

Nuclear Deexcitation Gamma-Ray Lines

INELASTIC direct

$$\left\{ \begin{array}{c} \mathsf{p} \\ \alpha \end{array} \right\} + {}^{20}\mathrm{Ne} \rightarrow {}^{20}\mathrm{Ne}^{*1.634}$$

INELASTIC inverse

$$^{20}\text{Ne} + \left\{ \begin{array}{c} \text{H} \\ \text{He} \end{array} \rightarrow ~^{20}\text{Ne}^{*1.634} \right\}$$

SPALLATION direct

$$\left[\stackrel{\mathsf{p}}{\alpha} \right] + {}^{24}\mathsf{Mg} \rightarrow {}^{20}\mathsf{Ne}^{*1.634} + \dots$$

SPALLATION inverse

$$^{24}Mg + \begin{cases} H \\ He \end{cases} \rightarrow ^{20}Ne^{*1.634} + \dots$$

Nuclear Deexcitation Gamma-Ray Lines (cont.)

Energy (MeV)	Reaction	Energy (MeV)
0.092	${\rm ^{55}Fe^{*1.408}} \rightarrow {\rm ^{55}Fe^{*1.317}}$	1.189
0.110	$^{19}\mathrm{F}^{*0.110} \rightarrow \mathrm{g.s.}$	1.190
0.158	$^{56}\mathrm{Co}^{*0.158} \rightarrow \mathrm{g.s.}$	1.223
0.197	$^{19}F^{*0.197} \rightarrow g.s.$	1.238
0.238	$^{19}\mathrm{Ne}^{*0.238} \rightarrow \mathrm{g.s.}$	1.249
0.275	19 Ne ^{*0.275} \rightarrow g.s.	1.266
0.339	59 Ni $^{*0.339}$ \rightarrow g.s.	1.275
0.411	$^{55}\mathrm{Fe}^{*0.411} \rightarrow \mathrm{g.s.}$	1.312
0.429	$^{7}\mathrm{Be}^{*0.429} \rightarrow \mathrm{g.s.}$	1.317
0.440	23 Na ^{*0.440} \rightarrow g.s.	1.334
0.451	$^{23}Mg^{*0.451} \rightarrow g.s.$	1.367
0.477	$^{55}\mathrm{Fe}^{*1.408} \rightarrow ^{55}\mathrm{Fe}^{*0.931}$	1.369
0.478	$^{7}\mathrm{Li}^{*0.478} \rightarrow \mathrm{g.s.}$	1.370
0.718	$^{10}B^{*0.718} \rightarrow g.s.$	1.408
0.744	$^{52}\mathrm{Cr}^{*3.114} \rightarrow ^{52}\mathrm{Cr}^{*2.370}$	1.428
0.781	$^{27}\text{Si}^{*0.781} \rightarrow \text{g.s.}$	1.434
0.812	${}^{56}\mathrm{Co}^{*0.970} \rightarrow {}^{56}\mathrm{Co}^{*0.158}$	1.441
0.835	$^{54}\mathrm{Cr}^{*0.835} \rightarrow \mathrm{g.s.}$	1.454
0.844	$^{27}\mathrm{Al}^{*0.844} \rightarrow \mathrm{g.s.}$	1.460
0.847	${}^{56}\mathrm{Fe}^{*0.847} \longrightarrow \mathrm{g.s.}$	1.600
0.891	22 Na ^{*0.891} \rightarrow g.s.	1.635
0.931	55 Fe ^{*0.931} \rightarrow g.s.	1.634
0.936	${}^{52}Cr^{*2.370} \rightarrow {}^{52}Cr^{*1.434}$	1.636
0.937	$^{18}\mathrm{F}^{*0.937} \rightarrow \mathrm{g.s.}$	1.771
0.957	$^{27}\mathrm{Si}^{*0.957} \longrightarrow \mathrm{g.s.}$	1.779
0.984	$^{48}\text{Ti}^{*0.984} \rightarrow \text{g.s.}$	1.809
0.999	$^{59}\text{Ni}^{*1.338} \rightarrow ^{59}\text{Ni}^{*0.339}$	1.811
1.005	${}^{58}\mathrm{Ni}^{*2.459} \rightarrow {}^{58}\mathrm{Ni}^{*1.454}$	2.000
1.014	$^{27}\mathrm{Al}^{*1.014} \rightarrow \mathrm{g.s.}$	2.029
1.022	$^{10}B^{*1.740} \rightarrow ^{10}B^{*0.718}$	2.034
1.038	${}^{56}\text{Fe}^{*3.123} \rightarrow {}^{56}\text{Fe}^{*2.085}$	2.094
1.042	$^{18}\mathrm{F}^{*1.042} \rightarrow \mathrm{g.s.}$	2.113
1.049	58 Co*1.049 \rightarrow g.s.	2.124
1.081	$^{18}F^{*1.081} \rightarrow g.s.$	2.164
1.130	$^{54}\mathrm{Fe}^{*2.538} \rightarrow ^{54}\mathrm{Fe}^{*1.408}$	2.211

y)	Reaction	Energy (MeV)	Reaction
	$^{59}Ni^{*1.189} \rightarrow e.s.$	2.230	$^{32}S^{*2.230} \rightarrow g.s$
	$^{59}\text{Co}^{*1.190} \rightarrow \text{g.s.}$	2.232	$^{31}S^{*2.232} \rightarrow \sigma.s$
	${}^{55}\mathrm{Fe}^{*2.539} \rightarrow {}^{55}\mathrm{Fe}^{*1.317}$	2.234	$^{31}P^{*2.234} \rightarrow g.s$
	${\rm ^{56}Fe^{*2.085}} \rightarrow {\rm ^{56}Fe^{*0.847}}$	2.263	23 Na $^{*2.704} \rightarrow ^{2}$
	$^{31}S^{*1.249} \rightarrow g.s.$	2.313	$^{14}N^{*2.313} \rightarrow \sigma$
	$^{31}P^{*1.266} \rightarrow g.s.$	2.598	56 EG*3.449 56
	$^{22}Ne^{*1.275} \rightarrow g.s.$	2.614	20 No*4.248 2
	⁴⁸ Ti ^{*2.296} → ⁴⁸ Ti ^{*0.984}	2.014	23Na*2.640
	${}^{55}\text{Fe}^{*1.317} \rightarrow \text{g.s.}$	2.040	$16 \cap *8.872 \longrightarrow 16$
	${}^{52}Cr^{*2.768} \rightarrow {}^{52}Cr^{*1.434}$	0.754	24x r +4 123 5
	${}^{59}\text{Ni}^{*2.705} \rightarrow {}^{59}\text{Ni}^{*1.338}$	2.754	$20 \text{ Mg}^{-1125} \rightarrow 20 \text{ Mg}^{-1125}$
	$^{24}Mg^{*1.369} \rightarrow g.s.$	3.333	$^{20}Ne^{*1.307} \rightarrow ^{2}$
	${}^{55}\mathrm{Fe}^{*2.301} \rightarrow {}^{55}\mathrm{Fe}^{*0.931}$	3.562	⁶ L1*3.595 →g.8
	$^{55}\mathrm{Fe}^{*1.408} \rightarrow \mathrm{g.s.}$	3.684	40 C * 3.736
	$^{59}\text{Ni}^{*1.767} \rightarrow ^{59}\text{Ni}^{*0.339}$	3.730 9.029	13C*3.854 →g
	$^{52}\mathrm{Cr}^{*1.434} \rightarrow \mathrm{g.s.}$	0.000	12 c1+4 439
	$^{53}Mn^{*1.441} \rightarrow g.s.$	4.438	$^{12}C^{*1.105} \rightarrow g.$
	$^{58}\text{Ni}^{*1.454} \rightarrow \text{g.s.}$	4.444	$^{11}B^{*1.210} \rightarrow g.$
	$^{59}Co^{*1.400} \rightarrow g.s.$	5.099	$^{26}\text{Si}^{*6.879} \rightarrow ^{28}$
	$^{23}Mg^{*2.051} \rightarrow ^{23}Mg^{*0.451}$	5.105	$^{14}N^{*5.106} \rightarrow g.$
	$^{14}N^{*3.943} \rightarrow ^{14}N^{*2.313}$	5.180	$^{15}\mathrm{O}^{5,181} \rightarrow \mathrm{g.s}$
	20 Ne ^{*1.634} \rightarrow g.s.	5.240	$^{15}\mathrm{O}^{*5.241} \rightarrow \mathrm{g}.$
	$^{23}Na^{*2.076} \rightarrow ^{23}Na^{*0.440}$	5.269	$^{15}\mathrm{N}^{*5,270} \rightarrow \mathrm{g}.$
	${}^{56}\mathrm{Fe}^{*3.856} \rightarrow {}^{56}\mathrm{Fe}^{*2.085}$	5.298	$^{15}\mathrm{N}^{*5.299} \rightarrow .\mathrm{g}$
	$^{28}\text{Si}^{*1.779} \rightarrow \text{g.s.}$	6.129	$^{-16}\mathrm{O}^{*6.130} \longrightarrow \mathrm{g}$
	$^{26}Mg^{*1.809} \rightarrow g.s.$	6.175	$^{15}\mathrm{O}^{*6.176} \rightarrow \mathrm{g}$
	${}^{56}\mathrm{Fe}^{*2.658} \rightarrow {}^{56}\mathrm{Fe}^{*0.847}$	6.322	$^{15}\mathrm{N}^{*6.324} \rightarrow \mathrm{g}.$
	$^{11}\mathrm{C}^{*2.000} \rightarrow \mathrm{g.s.}$	6.337	$^{-11}C^{*6.339} \rightarrow g.$
	³¹ P* ^{3,295} -→ ³¹ P* ^{1,266}	6.476	$^{11}C^{*6.478} \rightarrow g.$
	$^{31}S^{*3,283} \rightarrow ^{31}S^{*1,249}$	6.741	$^{11}B^{*6.743} \rightarrow g.$
	$^{56}\text{Fe}^{*,2.942} \rightarrow ^{56}\text{Fe}^{*0.847}$	6.790	$^{11}B^{*6.792} \rightarrow g.$
	$^{56}\text{Fe}^{*2.960} \rightarrow ^{56}\text{Fe}^{*0.847}$	6.879	$^{28}\mathrm{Si}^{*6.879} \rightarrow \mathrm{g}$
	$^{11}B^{*2.123} \rightarrow g.s.$	6.916	$^{-16}\mathrm{O}^{*6.917} \rightarrow \mathrm{g}$
	$\xrightarrow{\sim}$ S1 ^{2.109} \rightarrow g.s.	7.115	$^{-16}\mathrm{O}^{*7.117} \rightarrow \mathrm{g}$
	$^{\circ\circ} \mathrm{Al}^{\circ\circ, 211} \rightarrow \mathrm{g.s.}$	7.299	$^{15}N^{*7.301} \rightarrow g$
		15.10	$^{-12}C^{*15.11} \rightarrow g.$

 $2.230 \xrightarrow{32} S^{*2.230} \rightarrow g.s.$ 2.232 ${}^{31}S^{*2.232} \rightarrow g.s.$ $2.234 \quad {}^{31}P^{*2.234} \rightarrow g.s.$ $2.263 \quad {}^{23}\text{Na}^{*2.704} \rightarrow {}^{23}\text{Na}^{*0.440}$ 2.313 $^{14}N^{*2.313} \rightarrow g.s.$ $2.598 = {}^{56}\text{Fe}^{*3.449} \rightarrow {}^{56}\text{Fe}^{*0.847}$ $2.614 - {}^{20}\text{Ne}^{*4.248} \rightarrow {}^{20}\text{Ne}^{*1.634}$ $2.640 - {}^{23}\text{Na}^{*2.640} \rightarrow \text{g.s.}$ $2.742 \xrightarrow{16} O^{*8.872} \rightarrow \xrightarrow{16} O^{*6.130}$ $2.754 \xrightarrow{24} Mg^{*4.123} \rightarrow^{24} Mg^{*1.369}$ $3.333 = {}^{20}\text{Ne}^{*4.967} \rightarrow {}^{20}\text{Ne}^{*1.634}$ $3.562 \quad {}^{6}\text{Li}^{*3.563} \rightarrow \text{g.s.}$ 3.684 $^{-13}C^{*3.685} \rightarrow g.s.$ $3.736 \xrightarrow{40} Ca^{*3.736} \rightarrow g.s.$ $^{13}C^{*3.854} \rightarrow g.s.$ 3.8534.438 $^{12}C^{*4.439} \rightarrow g.s.$ $^{11}B^{*4.445} \rightarrow g.s.$ 4.444 $^{28}\mathrm{Si}^{*6.879} \rightarrow ^{28}\mathrm{Si}^{*1.779}$ 5.099 $^{14}N^{*5.106} \rightarrow g.s.$ 5.105 $^{15}\text{O}^{5,181} \rightarrow \text{g.s.}$ 5.180 $^{15}\text{O}^{*5.241} \rightarrow \text{g.s.}$ 5.240 $^{15}N^{*5,270} \rightarrow g.s.$ 5.269 $^{15}N^{*5.299} \rightarrow .g.s.$ 5.298 $^{16}O^{*6.130} \rightarrow g.s.$ 6.129 $^{15}\mathrm{O}^{*6.176} \rightarrow \mathrm{g.s.}$ 6.175 $6.322 - {}^{15}N^{*6.324} \rightarrow g.s.$ $^{11}\mathrm{C}^{*6.339} \rightarrow \mathrm{g.s.}$ 6.337 $6.476 - {}^{11}C^{*6.478} \rightarrow g.s.$ $6.741 - {}^{11}B^{*6.743} \rightarrow g.s.$ $6.790 - {}^{11}B^{*6.792} \rightarrow g.s.$ $6.879 \quad {}^{28}\text{Si}^{*6.879} \rightarrow \text{g.s.}$ $6.916 - {}^{16}O^{*6.917} \rightarrow g.s.$ 7.115 $^{16}O^{*7.117} \rightarrow g.s.$ $7.299 - {}^{15}N^{*7.301} \rightarrow g.s.$ $15.10 - {}^{12}C^{*15.11} \rightarrow g.s.$

Measured cross sections to produce the lines obtained from high-quality laboratory measurements by Dyer, Bodansky, Lang, Kiener, Tatischeff, etc.

Nuclear Deexcitation Gamma-Ray Lines (cont.) Prompt vs.Delayed Emission

Prompt	Nucleus	Mean lifetime τ (s)
Excited nuclei deexcite quickly.	²⁰ Ne* ^{1.634}	1.2 × 10 ⁻¹²
	12 C *4.439	5.6×10^{-14}
	16() *6.129	2 4 × 10 ⁻¹¹

Delayed

Delayed decay of radioactive nuclei into daughter nuclei in an excited state. The daughter nuclei deexcite promptly

Tatischeff, Kozlovsky, Kiener & Murphy 2006, ApJ, in press

Gamma-ray is Doppler shifted due to velocity of emitting nucleus

$$\varepsilon' = \varepsilon \frac{(1 - \beta^2)^{1/2}}{(1 - \beta \cos \theta)}$$

$$\beta = v/c$$

Direct reaction \rightarrow "narrow" line (FWHM 1 – 2%) Inverse reaction \rightarrow "broad" line (FWHM ~20%)

Note! This is true in a GAS where $\tau_{slow} > \tau_{life}$. The line width then reflects the recoil velocity and therefore retains information about the interaction.

But in the high density of a solid, τ_{slow} can be less than τ_{life} . The ¹⁶O line from solids is very narrow while the ¹²C line is not (τ_{life} of O is ~10⁻¹¹ s but τ_{life} of C is ~10⁻¹⁴ s). This can be seen in laboratory measurements and is expected from grains in the ISM.

Narrow line structure Heavier α -particle produces more Doppler shift

Accelerated particle angular distribution and flare location affect observed Doppler shift

Nuclear Deexcitation Gamma-Ray Lines (cont.) Total Spectrum

Nuclear Deexcitation Gamma-Ray Lines (cont.) Energies of the Accelerated lons

Nuclear Deexcitation Gamma-Ray Lines (cont.) Yields

$$Q = n \int_0^\infty dE_0 \frac{dN}{dE} (E_0) \int_0^{E_0} dE \frac{\sigma(E)}{dE/dl(E)} P(E_0, E)$$

Yields and yield ratios

- sensitive measure of spectral steepness at ~2–10 MeV nucleon⁻¹
- ambient abundances

Nuclear Deexcitation Gamma-Ray Lines (cont.) Production Depth

no significant attenuation due to Compton scattering

Positron Production and Annihilation

Radioactive positron emitters

 $p \rightarrow n + v + e^+$ (vs. e.c.: $p + e^- \rightarrow n + v$)

and the inverse reactions

$$au$$
 (sec)
¹⁶O 9.6 × 10⁻¹¹
¹¹C 1800

Pions

$$\begin{array}{c} p+p\\ p+\alpha \end{array} \right\} \longrightarrow \pi^{+} \xrightarrow{\tau_{\pi}} \mu^{+} + \nu \\ \downarrow \\ \tau_{\mu} \end{array} e^{+} + \nu + \overline{\nu} \\ \tau \text{ (sec)} \\ \pi^{+} \quad 3.8 \times 10^{-8} \\ \mu^{+} \quad 2.1 \times 10^{-6} \end{array}$$

				POSITRON EMITTERS	ORDERED BY LI	ETIME			
Positron Emitter	Positron Decay	Mean Life (sec)	Targets Proton Reactions	Alpha Reactions	Positron Emitter	Positron Decay	Mean Life (sec)	Targets Proton Reactions A	lpha Reactions
16		0.0.10-11	16-	160	1			14. 16.	
40	1	9.6x10	40 с-	40 с -	¹⁴ 0	1	102	14N, 100	58
+	1	3.1010	lu 4u	lu	54mo	1	118	54r 56r	30N1
μ 12.,	1	2.2810	12c 14u 16c	-n	61-	1	126	stre, stre	58 60
40	1	0.010	40 _{Ca}		50m	0.99	129	52.	SON1, CON1
54gc-	,	0.20	54 _F 56 _F		150	1	151	16° 20° 24° 15°	120 160 204 244
28n	1	0.20	28 ₆₄		300	1	1/6	32c 36a 30c	28c, 32c 36
50gm	1	0.39	52 _{C2}		500	1	216	30c(.+)	2051, 025, 00Ar
32	1	0.41	32 _c		380.		650	40c- 38	364. 400-
20	1	0.45	20 _{No}		53r-	1	707	54r. 56r. 58w. 60w	54r, 52c.
Na 4374	1	0.05	Ne	40	62c	1	/3/	offe, sore, soni, so	60
4295.0	1	0.71		40 _{Ca}	13.	0.98	842	120 140 160 200 130	14. 16o
39	1	1.24	40 _c	36 Am 40 cm	110	1	803	11c 14u 16c 20u	12c 14u 16c 20u
38m	1	1.24	40	36 ₄ , 40 _c	52m.	1	1./6x10'5	54- 56- 52-	54-
30	1 .	1.34	32c	Ar, La	Jr."Mn	0.98	1.83x10'5	58 60	Ste
37	1	1.73	40 с.		60.0		0 00 10+3	50N1,00N1	58 60
349	1	2.20	36 _A 40 _C 34 _C	32 36 Au 40 ca	34mo.	0.93	2.03x10 ⁻⁵	364 40c 34c	32c 36a 40c
18	1	2.20	20 _{No}	3, Ar, Cd	47.,	0.53	2.//x10*3	30Ar, 40La, 545	SLS, SCAP, SCA
35	1	2.41	36 ₄ 40 _C	32 36 Am	637	1	2.82×10**		60
24.	. 1	2.54	24 ₄₄		49a	0.93	3.29×10+3	520 54- 56-	OUN1
26	1	2.99	20		51.	1	3.63×10 ⁻³	520, 54r, 56r, 60	
²⁰ Si	1	3.19	²⁰ Si		18-	1	4.00×10 ⁻⁵	20., 24., 28., 18.	16 20 24
33Ce	1	3.62	^{30}Ar , ^{40}Ca	20 22	1.01	0.9/	9.50x10.0	18m (.+)) rou, cone, comg
51S	1	3.76	52S, 30Ar	²⁰ Si, ³² S	45-1		+4	52 _α	
⁵⁸ Cu	0.98	4.62	⁵⁸ Ni, ⁶⁰ Ni		610	0.86	1.60×10'*	J-Cr	58 60 61 +
²² Mg	1	5.57	²⁴ Mg		4350	0.62	2.02×10 ⁺⁴	52_{Cr} 43_{Ti} (a ⁺)	50N1,00N1,012n(B
29p	1	5.92	$^{32}S, ^{30}Ar, ^{29}Si$	24 20	52Fe	1 55	4 30×10+4	54 _{Fe}	
^{2/} Si	1	5.96	²⁸ Si, ²⁷ Al, ³² S	²⁴ Mg, ²⁸ Si	5500	0.77	9 11 10+4	56 _{Fe} 58 _N ; 60 _N ;	54 _{Fe} 56 _{Fe}
ZomAr	1	9.16	26_{Mg} , 27_{Al} , 28_{Si} , $32_{26_{Si}}$	$\sum_{23 \\ 23 \\ 23 \\ 23 \\ 27 \\ 27 \\ 27 \\ 27 \\ $	57 _{N 1}	0.40	1 87×10+5	58 _N ; 60 _N ;	54 _{Fe} 56 _{Fe} 58 _N ;
25.	1	10.2	28 ₅ ; 25 _{Ma} 32 ₅	Na, AL	52g _{Mp}	0.40	6 97×10+5	52 . 54 Fe 56 Fe 58 Ni	54 _{Fe}
234	1	10.3	24 _{Ma} 28 ₅₄ 23 _{Na}	2010 2410	- Phil	0.29	0.3/ 10	w;60	ie.
19 _{No}	1	24.0	20 _{No} 24 _{Mo}	160 20No 24No	48 _V	0.50	1.99×10 ⁺⁶	⁵² Cr, ⁵⁴ Fe, ⁵⁶ Fe, ⁵⁸ Ni	
10c	1	24.9	12c 14w	u, ne, Mg	58 _{Co}	0.15	8.82×10 ⁺⁶		56 _{Fe}
21.	1	27.0	24 _{Ma} 28 _c ;		56 _{Co}	0.19	9.82×10 ⁶	⁵⁶ Fe, ⁵⁸ Ni, ⁶⁰ Ni	⁵⁴ Fe, ⁵⁶ Fe, ⁵⁸ Ni
42mc -	1	32.4	- mg, - 51	40 c a	22 _{Na}	0.91	1.18×10 ⁺⁸	24 _{Mg} , 28 _{Si} , 32 _S , 23 _{Na} .	20 _{Ne} , 24 _{Mg} , 28 _{Si}
17 _c	1	07.4	20 24	14 20 Ma				22Ne, 25Mg, 27At	
	1	93.1	ne, -'Mg	- N,Ne	26 _{A2}	0.82	3.26×10 ⁺¹³	26 _{Mg} , 27 _{Al} , 28 _{Si} , 32 _S	²⁴ Mg, ²⁸ Si, ³² S

TABLE 3

Other sources

Kozlovsky, Lingenfelter & Ramaty 1987

$$\gamma + \gamma \longrightarrow e^+ + e^-$$

 $\gamma + B \longrightarrow e^+ + e^-$

Positron Production and Annihilation (cont.)

Positron Production and Annihilation (cont.) Production Depth

attenuation due to Compton scattering depends on accelerated-particle spectrum

Positron Production and Annihilation (cont.) Fate of Positrons

Direct annihilation with electrons (e⁺ + e⁻ \rightarrow 2 γ_{511})

1. with free electrons (df)

2. with bound electrons of H and He (dab)

Positronium formation (e⁺ + e⁻ \rightarrow Ps, E_b = 6.8 eV)

3. radiative combination with free electrons (rc)

4. charge exchange with H and He (ce)

 $E_{th} = 13.6 - 6.8 = 6.8 \text{ eV}$ (H) 24.6 - 6.8 = 17.8 eV (He)

Two possible Ps spin configurations

e⁺↑ e⁻↑ S = 1 "triplet" or "ortho" ³Ps (3 states: S_z = −1, 0, 1) e⁺↑ e⁻↓ S = 0 "singlet" or "para" ¹Ps (1 state: S_z = 0)

always formed in 3:1 ratio

ground state,
$$n_{Ps} = 1$$
 $T_1 = 1.25 \times 10^{-10} \text{ s}$ $\tau_3 = 1.4 \times 10^{-7} \text{ s}$ excited states, $n_{Ps} > 1$ $\tau_{ann} > \tau_{deexcite} \Rightarrow$ always annihilates
from ground state

Positron Production and Annihilation (cont.) Positron Annihilation

$$(-1)^{n_{\gamma}} = (-1)^{L+S}$$

Positron Production and Annihilation (cont.) Positronium Quenching

At sufficiently-high density, collisions with ambient particles (H, He & e⁻) may disturb Ps before annihilation

Because of its longer lifetime, this is relevant only for ³Ps

There are 2 types of quenching:

- **1.** ³Ps ionization reducing 3γ and increasing 2γ
- 2. conversion of ³Ps to ¹Ps (spin flip) reducing 3γ and increasing 2γ

Density estimate:

quenching rate ($n_{\mu}\sigma v$) must be greater than annihilation rate ($1/\tau_{3}$), so, with $v = \sqrt{kT/m_{e}}$,

$$n_{\rm H} > (\sigma \tau_3 \sqrt{kT/m_e})^{-1}$$

for T = 10⁴ K and σ = 5 × 10⁻¹⁶ cm², $n_{\rm H} \ge 10^{14} \, {\rm cm}^{-3}$

Positron Production and Annihilation (cont.) Slowing-Down of Positrons

Initial e⁺ energies are 100 keV – 100 MeV

The dominant e⁺ interactions above a few hundred eV involve energy loss:

- 1. Continuous with free electrons
- 2. Discrete via excitation and ionization of H and He

Below ~100 eV, Ps formation via charge exchange in-flight (ifce) becomes significant

Thermalized e⁺ can annihilate via all four processes: daf, dab, rc, ce

Quenching can reduce the ³Ps continuum and increase the line yield

Positron Production and Annihilation (cont.) Positron Fate

Positron Production and Annihilation (cont.) Interaction Cross Sections

Positron Production and Annihilation (cont.) Monte Carlo Simulation of Ps Formation In-Flight

Monte Carlo simulation includes: continuous energy loss to electrons discrete losses via ionization and excitation 2nd generation e⁺ from ionization quenching of Ps

Provides:

- 1. fraction forming Ps in flight, $f_1 \& f_2$
- 2. energy distribution of 1st and 2nd generation Ps
- 3. resulting ¹Ps annihilation line profiles

Line shapes are NOT Gaussian 1^{st} gen. FWHM ≈ 6.1 keV 2^{nd} gen. FWHM ≈ 2.6 keV

Positron Production and Annihilation (cont.) Line Shapes from Annihilation

direct

$$daf \rightarrow \begin{pmatrix} \text{both particles are} \\ Maxwellian \end{pmatrix} \rightarrow \begin{pmatrix} \text{line shape is} \\ Gaussian \end{pmatrix} \rightarrow \quad FWHM \approx 1.1 \sqrt{T_4} \text{ keV}$$

$$\begin{array}{l} \text{dab} \rightarrow \left(\begin{array}{c} \text{depends on} \\ \text{momentum of} \\ \text{atomic } e^{-} \end{array} \right) \\ \end{array} \begin{array}{l} \text{low temp} \rightarrow \left(\begin{array}{c} \text{depends only} \\ \text{atomic } e^{-} \end{array} \right) \rightarrow \left(\begin{array}{c} \text{line shape is} \\ \sim \text{Gaussian} \end{array} \right) \\ \rightarrow \end{array} \begin{array}{l} \begin{array}{c} \text{FWHM} \approx 1.4 \text{ keV (H)} \\ \text{FWHM} \approx 2.5 \text{ keV (He)} \end{array} \\ \end{array} \\ \begin{array}{c} \text{high temp} \rightarrow \left(\begin{array}{c} \text{depends only} \\ e^{+} \text{ distribution} \end{array} \right) \\ \rightarrow \end{array} \left(\begin{array}{c} \text{line shape is} \\ \text{Gaussian} \end{array} \right) \\ \rightarrow \end{array} \right) \\ \end{array}$$

$$\rightarrow \left(\begin{array}{c} \text{line shape is} \\ \sim \text{Gaussian} \end{array} \right) \rightarrow \Gamma_{\text{tot}}^2 = \Gamma_{\text{lo}}^2 + \Gamma_{\text{hi}}^2$$

in-flight ce \rightarrow (Ps distribution is) \rightarrow (line shape is NOT Gaussian) \rightarrow (FWHM \approx 6.1 keV (1st generation) FWHM \approx 2.6 keV (2nd generation)

Positron Production and Annihilation (cont.) Thermal Interaction Rates

$$\lambda = \left(\frac{\sqrt{m_1 m_2}}{2\pi kT}\right)^3 \int d^3 \mathbf{v_1} \, d^3 \mathbf{v_2} \, \exp\left(-\frac{m_1 v_1^2}{2kT}\right) \exp\left(-\frac{m_2 v_2^2}{2kT}\right) v \, \sigma(\mathbf{v_1}, \mathbf{v_2})$$

Positron Production and Annihilation (cont.) ³Ps Quenching Rates

Positron Production and Annihilation (cont.) Continuity Equations

Positron Production and Annihilation (cont.) f₅₁₁

the number of 511 keV photons per positron

Positron Production and Annihilation (cont.) Combined Line Shapes

The line shape is NOT Gaussian!

Positron Production and Annihilation (cont.) Vernazza Line Shapes and Q_{3γ}/Q_{2γ} Ratio

NEUTRONS

Neutron production

and inverse reactions

10⁴ 10³ + Fe Cross section (mb) + Fe $p + \alpha$ p + pO*6.13 10² Ne*1.64 10 1 10 10² 10³ 10⁴ 1 Energy (MeV nucleon⁻¹)

Neutrons are "detectable" either directly or indirectly

Directly detected at Earth

NEUTRON PRODUCTION (cont.) Energy Spectra

NEUTRON PRODUCTION (cont.) Energy Spectra

Neutron lifetime (τ_{mean} = 886 s) alters kinetic energy

spectrum with distance from Sun 10⁻³ 0-500 s 1000 - 1500 s-10⁻² 10⁻⁴ at the Sun 2000 – 2500 s 3000 – 3500 s 10⁻⁵ Neutrons MeV⁻¹ Neutrons MeV⁻¹ at 0.3 AU 10-4 10⁻⁶ at 1 AU 10-7 10⁻⁶-10⁻⁸) 10⁻⁹ 10-8 **10**⁻¹⁰ 10² 10³ 10 10⁴ 10² 10³ 10⁴ 1 10 Neutron energy (MeV) Neutron energy (MeV)

Differing neutron velocities result in time-dependent arriving kinetic spectra due to velocity dispersion

2.223 MeV NEUTRON-CAPTURE LINE

$n + p \rightarrow d + \gamma$

 $[m_n + m_p] - m_d = 2.223 \text{ MeV} (d \text{ binding energy})$

note: capture on other elements not significant due to low abundance relative to H (⁵He is unstable and returns the neutron)

³He is an important exception!

 $n + {}^{3}\text{He} \rightarrow t + p$

radiation-less charge-exchange reaction even though ³He/H $\approx 1 \times 10^{-5}$, the cross section is large $\sigma_{ce,^{3}He} \approx 1.6 \times 10^{4} (\sigma_{capture,H})$

2.223 MeV NEUTRON-CAPTURE LINE (cont.)

 $\sigma_{_{capture}} \propto v^{\!-1}$

neutrons thermalize in the dense photosphere (T \sim 6000K) before capture

Consequences:

- Line width due to thermal Doppler broadening is very small (<10 eV)
- γ rays are delayed by ~100 s after neutrons are produced
- Significant attenuation of the line due to Compton scattering

2.223 MeV NEUTRON-CAPTURE LINE (cont.) Calculated Yields & Ratios

Pion Production

10 10^2 10^3 Positron energy E₊ (MeV)

Pion Production (cont.)

Calculations of High-Energy Observable Emission

The traditional physics approach: Develop a model for the flare process that can explain the observations with as few physically-based parameters as possible

Magnetic Loop Model

• Scattering due to MHD turbulence replenishes loss cone: $\lambda = \frac{\Lambda}{1}$ (mean free loss cone)

 $\frac{\Lambda}{L_c}$ (mean free path) (loop half length)

- Mirroring due to magnetic field convergence: $B(h) \propto P(h)^{\delta}$
- Atmospheric model, n(h), T(h)
- Accelerated-particle spectral index, abundances
- ambient abundances
- B perpendicular to solar surface at footpoints

Summary of the Dependence of Observable Quantities on the Parameters

Observable	Acceleration Parameter	Physical Parameter	Observable	Acceleration Parameter	· Physical Parameter
narrow deexcitation line fluences & ratios	$\alpha/\mathrm{p},s$	ambient abundances	neutron fluence at Earth	$lpha/{ m p},s$	$\delta, \lambda, heta_{ m obs}, n(h)$
narrow deexcitation line shift and shape	$\alpha/\mathrm{p},s$	$\delta, \lambda, \theta_{\rm obs}, n(h)$	neutron arrival time history at Earth	$a_{\rm ion}(t), \alpha/{\rm p}, s$	$\delta, \lambda, \theta_{\rm obs}, L_c, n(h)$
narrow deexcitation line time history	$a_{ m ion}(t)$	$\delta, \lambda, L_c, n(h)$	images	_	$L_c, \theta_{\rm obs}$
electron bremsstrahlung time history	$a_{ m e}(t)$	L_c	511 keV line shape and continuum	$\alpha/\mathrm{p},^{3}\mathrm{He}/$ $^{4}\mathrm{He},s$	$\delta, \lambda, \theta_{\text{obs}}, n(h), T(h), X(h)$
neutron-capture line fluence	$lpha/{ m p},s$	$\delta, \lambda, \theta_{\rm obs}, n(h),$ ambient ³ He/H	511 keV line time history	$a_{ion}(t), \alpha/p, s$ acc. abundances	$\delta, \lambda, \theta_{\rm obs}, L_c, n(h), X(h)$
neutron-capture line time history	$a_{\rm ion}(t), \alpha/{\rm p}, s$	$\delta, \lambda, \theta_{\rm obs}, L_c, n(h),$ ambient ³ He/H	511 keV line fluence	α /p, s , ³ He/ ⁴ He acc. abundances	$\delta, \lambda, \theta_{\mathrm{obs}}, n(h), T(h), X(h)$