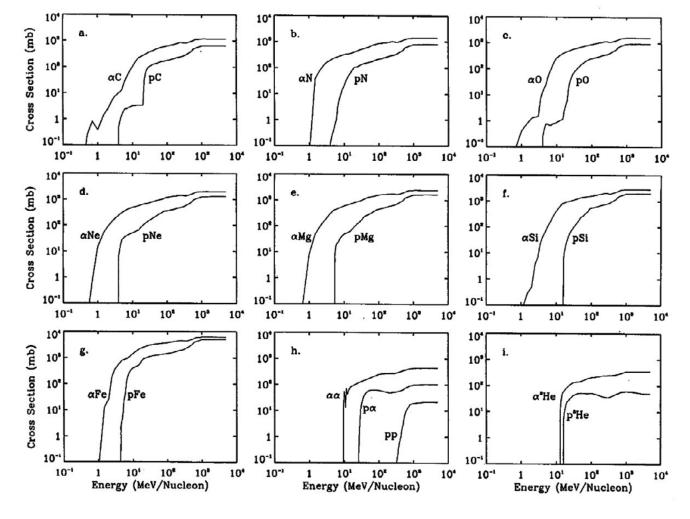
Low Energy Neutron Production


Neutron production

 $\begin{array}{c} \mathsf{p} + \mathsf{p} & \longrightarrow & \mathsf{n} + \dots \\ \mathsf{p} + {}^{4}\mathsf{He} & \longrightarrow & \mathsf{n} + \dots \\ \alpha + \alpha & \longrightarrow & \mathsf{n} + \dots \\ \alpha + \alpha & \longrightarrow & \mathsf{n} + \dots \\ \begin{array}{c} \mathsf{p} \\ \alpha \end{array} \right\} + {}^{12}\mathsf{C} & \longrightarrow & \mathsf{n} + \dots \end{array}$

and inverse reactions

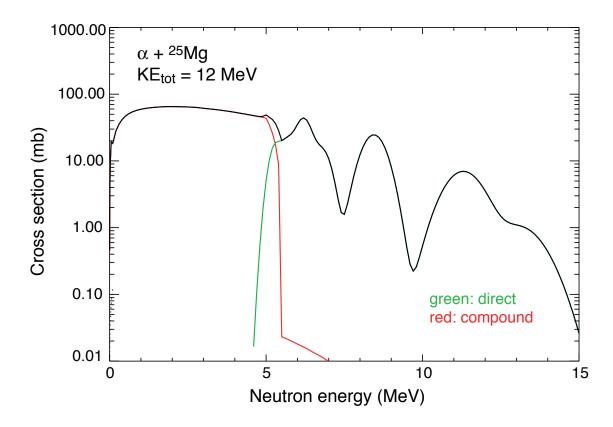
TABLE 1 Targets, Projectiles, and Neutron Production Threshold Energies (M eV per Nucleon)

Isotopes	Proton	lpha-Particle
¹ H	292.3	25.7
³ He	10.3	5.5
⁴ He	25.7	9.5
¹² C	19.6	2.8
¹³ C	3.2	Exothermic
¹⁴ N	6.3	1.5
¹⁵ N	3.7	2.0
¹⁶ O	17.2	3.8
¹⁸ O	2.5	0.2
²⁰ Ne	15.4	2.2
²² Ne	3.8	0.15
²⁴ Mg	15.0	2.1
²⁵ Mg	5.3	Exothermic
²⁶ Mg	5.0	Exothermic
²⁸ Si	15.6	2.3
²⁹ Si	5.9	0.4
⁵⁶ Fe	5.5	1.4
⁵⁴ Fe	9.2	1.6

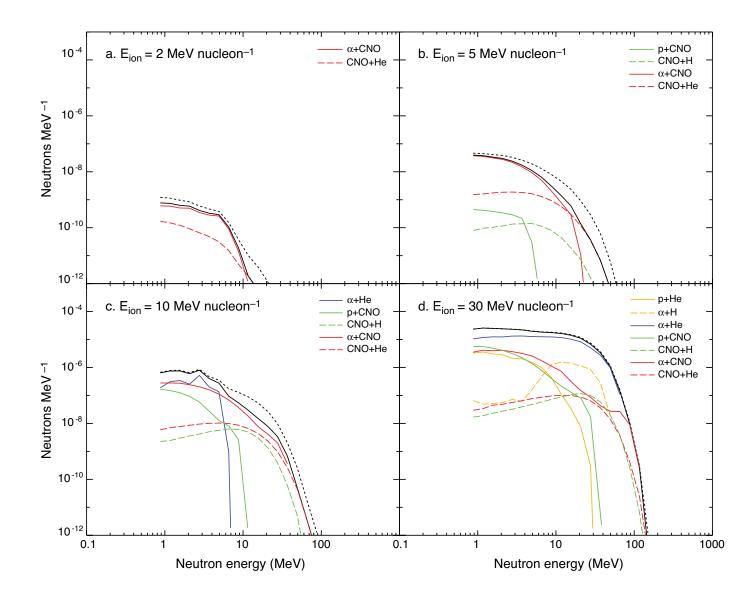


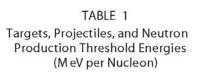
Hua et al. 2002

Neutron Production from Typical Flare Ion Spectra


Neutron Decay

Neutron lifetime (τ_{mean} = 886 s) alters kinetic energy spectrum with distance from Sun




Improvements to the Neutron Production Code

To provide information about low-energy neutron production, we used the global-nuclear theoretical program TALYS. (Koning, Hilaire & Duijvestijn 2005; Koning & Duijvestijn 2006) TALYS is software for the simulation of nuclear reactions using state-of-the-art nuclear models and comprehensive libraries of nuclear data, developed at NRG Petten, the Netherlands and CEA Bruyeres-le-Chatel, France.

Neutron Spectra from Low-Energy Nuclear Reactions

lsotopes	Proton	α -Particle
¹ H	292.3	25.7
³ He	10.3	5.5
⁴ He	25.7	9.5
¹² C	19.6	2.8
¹³ C	3.2	Exothermic
¹⁴ N	6.3	1.5
¹⁵ N	3.7	2.0
¹⁶ O	17.2	3.8
¹⁸ O	2.5	0.2
²⁰ Ne	15.4	2.2
²² Ne	3.8	0.15
²⁴ Mg	15.0	2.1
²⁵ Mg	5.3	Exothermic
²⁶ Mg	5.0	Exothermic
²⁸ Si	15.6	2.3
²⁹ Si	5.9	0.4
⁵⁶ Fe	5.5	1.4
⁵⁴ Fe	9.2	1.6

Sensitivity Comparison of Direct Detection of Low-energy Neutrons vs. Inferred Detection via the Neutron-Capture Line

Neutron production at the Sun is always accompanied by neutroncapture line production.

This very-strong and very-narrow line is easily detected by moderately-sized gamma-ray detectors at Earth.

At 0.48 AU, the 1–10 MeV neutron flux is comparable to the neutroncapture line flux at 1 AU.

For Earth-orbiting gamma-ray detectors, $A_{eff} \sim 50 \text{ cm}^2$ For inner-heliosphere neutron detectors (such as MESSENGER), $A_{eff} \sim 10 \text{ cm}^2$.

However, at 30 R_s , the neutron flux is >20 times the neutron-capture line flux at 1 AU!