RHESSI and TRACE Observations of Emerging Flux Reconnection in a Solar Jet on August 21, 2003

L. Glesener, S. Krucker, R.P. Lin

RHESSI Workshop 10, Annapolis, MD August 4, 2010

Outline

- Recap of emerging flux jet model
- Comparison of RHESSI HXR and TRACE EUV images
 - Geometric alignment shows several properties of the emerging flux model
- What can we learn from radio observations?
 - Energetic electrons precede the jet, in the path of the jet.
 - Escaping and trapped electrons are responsible for the HXR emission.
- Conclusions

Emerging Flux Model

- Shibata--Heyvaerts model:
 - Emerging flux from chromosphere reconnects with overlying coronal field.
 - Coronal acceleration site and outflow jets
 - Cool and/or hot jets

(Shibata et. al, 1996)

Emerging Flux Model

Expected locations of hard x-ray emission

Emerging Flux Model

Expected locations of hard x-ray emission

if event is partially occulted

August 21, 2003 jet

- EUV jet
 - 480 (+/- 50) km/s

- Associated flare:
 - GOES C class
 - 1-2 degrees occultation

TRACE 171

Time profile

SXR: GOES 1.6, 3.1 keV

HXR: RHESSI 25-50 keV

Radio: PHOENIX 450-600 MHz

EUV: TRACE 171 A

High coronal source (Image 1)

Contour levels 30, 50, 70, 90%

- Visible early (only)
- Thermal and nonthermal emission

High coronal source (Image 1)

Contour levels 30,

50, 70, 90%

• Visible early (only)

- Thermal and nonthermal emission
- Reconnection outflow jets

Base of the jet (Image 3)

- \cdot Nonthermal emission
- No thermal emission

Near-limb source (Image 2)

Contour levels 30,

50, 70, 90%

-220 900

920

940

X (arcsecs)

960

980

• Present throughout flare/jet.

• Thermal electron density:

$$n_{therm} = \sqrt{\frac{EM}{V}}$$

Therm 10 Cm

Instantaneous nonthermal electron density at peak time:

$$\frac{dn}{dE} = 1.21 \times 10^{42} \,\gamma(\gamma - 1)^2 \,B(\gamma - \frac{1}{2}) \frac{AE^{-\gamma + 1/2}}{n_i V}$$

 $n_{nontherm} \sim 2 \times 10^8 \text{ cm}^{-3}$

Near-limb source (Image 2)

940

X (arcsecs)

960

980

-220

900

920

Contour levels 30, 50, 70, 90%

 Late in the flare, a small, hot loop becomes visible.

Near-limb source (Image 2)

<u>Contour levels 30, 50, 70, 90%</u>

 Late in the flare, a small, hot loop becomes visible.

• This loop is also predicted by the emerging flux model.

Radio time profiles: PHOENIX

- plasma emission, trapped electrons
- Possible gyrosynchrotron

• Type III bursts

- GHz emission matches nonthermal HXR profile
- Ⅰ Jet starts at last Type III burst

Type III bursts: Nancay RadioHeliograph

- Increasing source height with frequency
- Accelerated particles move along path later taken by jet
- Density scale height L = 52.4 + / 3.5 Mm

$$n \propto n_o e^{\frac{h}{L}}$$

$$2\pi f = \sqrt{\frac{ne^2}{m\varepsilon_o}}$$

• Density at limb ~ 2 x 10^{10} cm⁻³

Radio bursts and jet location

Conclusions

- The following flare elements support the Heyvaerts-Shibata model of emerging flux:
 - Two early nonthermal coronal HXR sources
 - Nonthermal emission from the jet base at the start of the jet
 - A small, hot flare loop located opposite the jet
- Radio data temporally coincides with nonthermal HXR emission.
 - Type III bursts/escaping electrons precede the jet along the jet path. Northern migration is seen for both these phenomena.
 - Broadband decimetric bursts correlate with HXR emission and could be produced by trapped electrons.

Extra Slides

TRACE images of the jet

- Jet velocity found by fitting slope of intensity profile.
- V_{iet} ~ 480 km/s (+/- 50 km/s)
- Velocity consistent with Alfvén speed or sound speed

Comparison with other jets

	Shimojo et. al. (1996)	Kim et. al. (2007)	Bain &Fletcher (2009)	Current study
Number events	100	3	1	1
Data source	Yohkoh	Hinode	RHESSI	RHESSI
		TRACE	TRACE	TRACE
Apparent velocity (km/s)	10-1000	90-310	~500	~480
	(avg 200)			
Jet length (km)	10 ³ -4x10 ⁵	1.1x10 ⁵ -5x10 ⁵		at least
	(avg 1.5x10 ⁵)			8.8x10 ⁴
Jet lifetime	min. to hours	100-2000 sec		~1300 sec
Nonthermal emission			up to 30-50keV γ=4.52	up to 30-50keV γ=4.0

August 21, 2003 flare: Time Profile

Spectrum: time interval 1

Spectrum: time interval 3

