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1 Introduction

Before describing MEMVIS, T will outline the basics of the Maximum Entropy
Method (MEM) as it is applied to image reconstruction for HESSI (MEM
SATO).

Observations are made in the form of counts in time-bins, each time-bin
corresponding to a particular roll angle. There are nine sets of counts, one
set from each detector. The aim is to find an image which is consistent with
these counts to within the photon counting noise. Since there can be many
images consistent with the observations, MEM is designed to find smoothest
such image. Traditionally, consistency is measured using a x? measure on the

counts: N B?
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where N; are the expected counts and F; are the counts from the reconstructed
image, and o; is the estimated error of count N;. If only photon counting noise
is important then ¢; = E;, but in practice systematic errors and uncertainties
in the background may also be important and so should be included in o;. It is
important to note that F; should be used to estimate the error on the counts
rather than the observed value N;. E; need not be an integer, and will rarely
(if ever) be zero. These properties are crucial for low counts. When there is less
than one expected photon per bin, then the C' statistic should be used instead
of the x? statistic. The smoothness of the image is quantified using an entropy
measure:
S=-> FjlogFy
J

where j labels the pixels in the image. A smooth image will have a larger S.
For example, two images of P pixels, one with only one ‘lit’ pixel, the other
with constant pixel brightness, that both have the same total flux F will have
S values of —F'log F' and —F'log(F/P) respectively. The goal of MEM is to
find the smoothest image that fits the data. In practice, this means maximising
S — %XQ for the smallest possible A. The idea is that A is set to a small value



to begin with and an image is sought iteratively which has y? = 1, i.e. it is
consistent with observations. If such an image cannot be found, the smoothness
constraint is probably too strong, and so A is increased to allow a less smooth
image.

The main steps in the implementation of MEM for HESSI using counts
(MEM SATO) are as follows:

1.

6.

The iteration starts from an image where every pixel has the same intensity
(the grey map). The total flux of the image is estimated by summing all
the counts, and multiplying by a factor (about 4 for HESSI) accounting
for the grid transmission.

. This image is used to calculate an expected set of counts.

. The expected counts from the image are compared to the observed counts,

and the differences are used to adjust the image so as to increase S — %x?

If the difference in counts from the new image has y? ~ 1, then the process
is ended.

. If the change in 2 is very small, then ) is increased, effectively relaxing the

smoothness constraint slightly, which might then allow x? to be brought
closer to 1.

Return to step 3

The MEMVIS algorithm uses the same basic steps as outlined above, but
works in polar co-ordinates, and uses visibilities rather then counts. The ad-
vantages of using visibilities are:

1.

ot

The aspect correction can easily be applied whilst constructing visibilities
from the observed counts.

. Due to 1, visibility modulation patterns do not need to be corrected for

the aspect solution for each time bin.

. Due to 2, operations involving modulation patterns can be performed

with a convolution based on Fast Fourier Transform methods, rather than
a matrix multiplication. This allows a speed up of order M? as compared
to M log M, where M is the number of time bins.

. Due to 2, integration of visibility values over several rotations simply in-

volves adding together visibility series from those rotations.

. In constructing visibilities from observed counts, there is effectively a

smoothing, which relaxes problems arising from the presence of zero counts.
The price is the introduction of a small systematic error and a correlation
of noise on visibilities in neighbouring time bins.



2 Visibilities

The notion of visibilities 1s borrowed from radio astronomy, though here we will
only consider visibilities in the context of HESSI, making clear their relation
to observed counts. In the present context, ‘counts’ and ‘visibilities’ can sim-
ply be thought of as two time series for presenting the same information: the
response of HESSI to an image. For this reason, in the MEMVIS application,
if there are M timebins of counts in one rotation then there will be M wvisibil-
ities. Counts are non-negative integer values, whereas visibilities are complex
numbers, though the real and imaginary parts of the visibilities do not contain
independent information.

It 1s easiest to understand the relation between visibilities V},,; and counts
Nk, where m labels the timebin and £ the detector, if the spin axis is fixed,
i.e. not pointing to different points on the Sun at different times as it will in
practice. The real parts of the visibilities are just equal to the mean-subtracted
counts:

Re(Vimk) = Nk — N (1)

where N is the mean over all timebins for detector k. Each member of the
time series for a given k corresponds to different azimuth in the transform of a
2D image in polar co-ordinates. Each detector on HESSI responds to a spatial
frequency corresponding to the pitch of the detector. In this sense, the visibilities
obtained from HESSI’s counts are analogous to samples from a 2D Fourier
transform of the source in polar co-ordinates. The samples are on concentric
circles at evenly spaced points on each circle. The points on the same circle have
the same k, and the points at the same azimuth have the same m. The largest
circles, corresponding to the shortest spatial frequencies from the finest detectors
naturally need the most points. The counts, which correspond to the real part
of the transform, may therefore be thought of as a cosine transform. The word
‘analogous’ is used above because the transform is not based on sinusoids, as
is a Fourier transform, but is based on the profile shown in Fig. 1. This is the
visibility time series, or profile, that would obtained from a point source. It has
a period equal to the rotation period (only one period is shown in the figure),
but contain cycles of varying length within each rotation period.

The visibilities from detector k, time bin m, of an image F;; are defined
mathematically as

Vink = Z Py ok Bij (2)
ij
The matrices P are visibility modulation patterns which are defined (for the
first harmonic):
Pij,mk — e—iKka!'zj

where r;; is the position vector of pixel 7, j in the image and K, is the position
vector of pixel m, k in the visibility transform (on what radio astronomers call
the UV plane). If Cartesian co-ordinates are used in which the pixel centre is
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Figure 1: The visibility profile for detector 8 with 256 time bins.

at (z;,y;) then
Kok 155 = Ki cos amp®; + K sin amp s

where a,, is the roll angle for timebin m for detector k. Kji = 27/py where
is the pitch of detector k. In polar co-ordinates, where the pixel centre is at
(ri, 0;) it is given by:

Kkaz'j = Kkrij COS(Ozmk — HZ)

Modulation matrices for the same detector k, but different timebins m are simply
related to each other by rotation about the centre of the co-ordinate system
(which is chosen to be Sun centre, though this choice is really arbitrary). For
example, if P;; o5 (timebin 0 for detector 5) is displayed as an image, then P;; 5
will simply be the same image rotated by 2mm/Mj,, where M}, is the number of
timebins for detector k. In contrast with modulation patterns used elsewhere in
the HESSI software, these modulation patterns are never adjusted to account for
motion of the spin axis. Instead, the observed visibilities, constructed from the
observed counts, are corrected for wandering of the spin axis. For this reason,
visibilities can literally be added from one rotation to the next to produce a
visibility time series integrated over many rotation. This is not possible with
counts because they cannot be easily corrected for wandering of the spin axis.
There are good reasons to work with visibilities in polar co-ordinates. For
one thing, as just discussed, visibility modulation patterns are simply related
to one another by rotation. In dealing with polar visibilities as arrays on a



computer, a rotation only requires shifting the elements in the array (with wrap
around at the ends).

In working with visibilities it can be helpful to understand them in their con-
tinuous form. Working with a (continuously defined) map in polar co-ordinates
F(0,r) the visibilities V(a, k) are defined similarly to above

2w o]
Ve, k) = / / P(a,k;0,r)B(0,r)rdrdf (3)
o Jo
For the first harmonic, the modulation patterns for visibilities are given by

P(a,k;0,r) = exp(—ik.r)
= exp(—ikrcos(a —0)) (4)

The real part of P is just the standard modulation patterns (normalised to 1,
with 1 subtracted). For a point source of brightness 1, F = d(r — rg)d(f —
60)/(277), the visibilities are:

V(a, k) = exp (—ikrg cos(a — b))

which for given k, plotted against 6, will have the same profile as shown in
Fig. 1.

It is worth noting that the modulation patterns are assumed constant in
amplitude and harmonic content only within a small region of the Sun. So the
artifice of using the full 360 degrees of azimuth produces accurate maps only in
the neighbourhood of one azimuth. This is because the internal shadowing of
the grids has a slowly-varying dependence on radius and azimuth. In practice,
one has to pick grid transparency and modulation amplitude values (defined in
Section 5) characteristic of one point on the Sun before making a map.

From here onwards, it should be understood that discrete modulation pat-
terns P;; mk represents a polar, visibility modulation pattern where m labels
time bin, k labels the detector, 7 is the azimuthal pixel index, and j is the radial
pixel index. In MEMVIS a polar map B, has pixels with constant size in r
and . This means that a pixel’s area increases with r, but there will be the
same number of phi pixels for each radial index n. All maps will be assumed to
be sun-centred.

3 Observed Counts to Visibilities

Before MEMVIS begins the iteration loop, the observed counts time series must
be converted to a visibility time series with the same number of timebins. Here
I will outline the process, the full details of the which can be found in Ed
Schmahl’s routine hsi_calib_ev2vis.pro. The first step is to divide the count
time series into its cycles. Each cycle is fitted with a function of the form
Acos(wm) + Bsin(wm), where m is the time bin index, and w = 27 /7, where
7 1s the length of the cycle in timebins. The A and B coefficients can then be



used to construct the real and imaginary part of the visibilities for that cycle.
The whole visibility time series can be constructed, one cycle at a time, in this
manner. However, these visibilities are not the ones as defined above; they are
spin axis centred, not sun-centred. The spin axis centred visibilities are related
to the sun-centred visibilities by adding a varying phase factor in the visibility
modulation pattern’s exponential in equation (4). In practice therefore, because
the visibilities are related linearly to P, they are easily be converted to sun-
centre by multiplying P by exp(ia), where a can be obtained from the aspect
solution. The visibilities then need to be shifted back or forth by a number
of time bins to account for the relative orientation of each detector’s grid in
azimuth (i.e. the grid angle). (This is probably one source of the strange offsets
in the visibility time series in MEMVIS - the visibilities should be interpolated
rather than simply shifted by an integral number of time bins).

To use the visibilities in the MEM reconstruction we also need to know the
variance on each visibility. To do this, we can take advantage of the fact that
each visibility can be expressed as a weighted sum of counts:

Vij = Z w107
!

where the sum usually only involves a small subset of the count time-bins for
detector k. The complex weights w are calculated during the visibility recon-
struction process, and may be used to calculate the variance associated with the
real part of visibility V4; from the formula:

(‘71?]')2 = E Re (wij1)* C)
1

with the formula for the imaginary part simply involving changing Re() to Im().
Because visibilities in neighbouring time-bins depend on common count values,
the noise on adjacent visibilities will be correlated. This will broaden the y?
distribution’s peak, but does not alter the mean. The degrees of freedom of y?
as used with HESSI are very large, certainly no less than 64 for the coarsest
detector. This means that the peak is very narrow to start with, and is only
broadened by a small amount because of the correlated noise on the visibilities.
Using Monte-Carlo tests designed to re-create the y? distribution of the recon-
structed visibilities I have confirmed this conclusion, even for low count-rates
(less photons than time bins) where the use of the x? becomes invalid for the
counts. The reason for this is almost certainly the smoothing that is introduced
in the construction of visibilities from the counts.

In addition to the variance of the visibilities arising from photon counting
statistics, we must also know the systematic error arising from the count to
visibility conversion. There is no easy way to do this on a theoretical basis,
though methods of estimating it during the conversion process are being de-
vised and tested in cases where the noiseless visibilities are known. Currently,
apart from small offsets that are currently present (and easily corrected for), the



systematic error in the visibilities is not important until the simulation param-
eter sim_photon is about 100,000, and is difficult to reliably measure because
of small time-shift offset that is present in the visibilities.

4 Implementation of MEM for polar visibilities

The MEM equations in MEMVIS are derived in a similar manner as described by
Sato, Kosugi and Makishima (1999). The main difference is that the visibilities
are complex, and so require the maximisation is performed with respect to their
real and imaginary parts separately. The function to be maximised is

Q = S+ApE+Y [MNiuRe(Dmk) + A Im(Dpi)]

mk
A
— EZ
mk

Re(Dmi)\? [ Im(Dpmi)\?
R + 7 (5)
O mk Omk
where m is the time bin index and k is the detector index. The first term is
the entropy S = —fi;log fij, which is largest when the image is smoothest.
fij = Fij/F are the pixel fluxes F;; normalised by their average value F. The

second and third terms are constraints, with associated Lagrange multipliers
)\ﬁk and A that F = 0 and D,,; = 0, where:

mk>
Dy = E FfijPijmk — Vi + Nk (6)
ij
E = § fi — N} (7)
ij

where V. are the observed visibilities. The E constraint enforces the normal-
isation of f;;, so that its sum is equal to the number of pixels. The D,,; con-
straint enforces the fact that n,,; are the residuals from subtracting the actual
visibilities from the predicted visibilities from the image. Note the constraints
on the real and imaginary parts of D, have to be enforced separately, because
the maximisation of () would not be possible if it were a complex quantity. The
final term 1is just —%Xz, where A is the smoothing parameter.

The method used by MEMVIS to maximise () is fixed-point iteration. The
iteration equations are obtained by setting partial derivatives of ) with respect
to fij, nﬁk and n;k to zero, and re-arranging the expressions to give, respec-
tively:

fi = A=1,F )0 Dok Re(Pij mi) 2 i Im(Pi,mx )] (8)
Re(nmik)

R _
Im(nmg)

I _



where Ag is determined by inserting the first of these equations into the con-
straint that £ = 0, using (7). This means that Ag — 1 represents the log of the
normalization factor N2/ 3 fij).

An iteration equation for F is not included in MEMVIS at present because
the visibilities cannot be used to determine the total flux of the image. In
contrast with standard modulation patterns (i.e. those for calculating counts
from an image), visibility modulation patterns can be negative and positive
This means that response to a source in visibilities can be positive or negative,
whereas for standard modulation patterns it is always positive. In principle
therefore, it is easy to imagine that there are distributions of source flux which
“cancel” out in the visibilities. The problem is clearly illustrated for a map of
constant intensity. The counts observed for such an image would be (nearly)
the same in every time bin - the constant value being related to the total image
brightness. The visibilities for such an image would be (nearly) zero in every
time bin, containing no information about the total flux of the source. There
are many potential solutions to this problem - e.g. searching for the dimmest
image that matches the observations, adding a non-zero offset to the visibilities
according to the average observed counts - but understanding the effect on the
final solution image requires careful consideration. For the moment the total
flux is estimated at the start of the algorithm and fixed to this value. The total
flux is estimated as follows:

Btot — Z Nt Z

(T might be including the modulation amplitude as a factor on the denominator
in the code***) where Cly,j is the count from detector & in time bin m, T is the
grid transparency, 7 is the live-time, N is the number of detectors and N; is
the number of timebins.

The variance of By, due to photon counting statistics will be

Btot — Nd ZNt Z

However, another source of error arises because the normalisation by the grid
transparency 7' is not quite correct. The reason can be seen by considering
the basic modulation profile from a point source of flux F', located at polar
co-ordinates (r, f)

k*ka

mk ka

M(a) = FT[l + Acos (Krcos(f — a))]

where A is the modulation amplitude K = 27/p, p being the pitch of the
detector. In averaging this over roll angle «, as is done in calculating By, the
cos term does not necessarily average to zero. This means that dividing by ¢
will not give the brightness . The average of M over a, M is periodic in Kr,
having maxima/minima at Kr = jm, where j is an integer. The average also
decreases with increasing Kr, so that this problem is least severe for the finest



detectors, and sources close to the limb. At Kr ~ 100, the cos term average
will be about 5% of the average of the first term. In practice, this error will be
reduced because of the motion of the spin axis and if the source has extended
structure (this needs to be checked in more detail in test simulations).

5 Implementation of MEMVIS equations

In polar co-ordinates, and because the visibility modulation patterns do not
need to be corrected for spin axis motion, it is not necessary to calculate every
element of the visibility modulation pattern matrix Pj; px. In fact, only F;; ox
(the modulation for the Oth time bin) is needed because it can be rotated (shifted
in ) to make the modulation pattern for the mth timebin. If the number of
time bins for detector k is set equal to the number of ¢ pixels the relation is just
Pijmk = Pligzm)jok. This saves a considerable amount of memory in storing
the visibility modulation patterns. From here on, we will refer to the visibility
modulation patterns as F;; x, i.e. those for detector k for the first time bin.

One iteration of MEMVIS (step 3 in the list of steps in Section 1) implements
the MEMVIS equations (8-10) as follows:

1. Perform back projection to obtain an image for each detector
2. Combine these images and normalise to obtain one image

3. Combine this image with the one from the previous iteration
4. Calculate the visibilities from this image

5. Calculate y?

The n,,; values are calculated as the difference between the observed and
expected visibilities (?7). They are then used to calculate the new A, values
(9,10). The back projection step is the evaluation of

bije=F Y [XEeRe(Pijmk) + Mok I (Pij mi)]

which appears in the second exponential in (8). b;; is back projection image
for detector k. In the MEMVIS code, the back projected images from different
detectors (each term in the k sum) can have different numbers of # pixels (though
they all cover the same area); the coarser detectors having the fewest (and
therefore largest) pixels. This is because the number of a pixels must equal to
the number of time bins used for that detector. Apart from the advantage this
brings in saving memory (explained at the start of this section), it also allows a
convolution to be used. In back projection, the convolutions performed are on
the right hand side of the following equations:

S N Pijmk = AR Pl_mjok (11)

D Mk Pijmk =Y Mo Plicm)jok (12)



These convolutions can be performed using Fast Fourier Transform methods
which can have significant speed advantages. If there are N; a pixels, then
straightforward evaluation of the above equations involves N; terms in the sum-
mation, which must be done N; times (for each 7). The calculation speed is
therefore proportional to N2. The Fourier convolution has a calculation speed
of N;log, N;, assuming N; is a power of 2. For N; = 210 = 1024, the speed up
is therefore of order 100. This speed up 1s in comparison to the matrix method
that was initially used in the HESSI imaging software. The introduction of
Richard Schwartz’s annsec modulation patterns (sometime in early 2000) has
significantly improved the speed of the matrix operations. The methods used
to achieve this increased speed do not scale in a simple way with N;, and can
depend on the structure of the image involved. As a result the only meaningful
way to compare the relative speeds is by tests on the same computer, on the
same test images.

Combining the images from back projection first involves rebinning each de-
tector’s back projected image to the correct size (corresponding to the requested
number of pixels, and pixel sizes). This rebinning can cause small time-shifts
between the predicted and observed visibilities. Whether this is a problem or
not will depend on the number of photons (more photons, and therefore lower
noise may expose these time-shifts) and on the detector in question (small shifts
are more important for the finer detectors which have faster modulation cycles).
If the rebinning is causing problems, then the problem can be easily solved (at a
cost of speed) by increasing the number of time bins specified by the keywords
time bin def and/or time _bin min.

Once the individual images have been rebinned and added together the final
image is obtained by putting the summed image through the exponential func-
tion (the second exponential in (8)). This step has the effect of accentuating the
largest pixel values. The resulting image is then normalised (multiplication of
the first exponential in (8)) to give fi; and then multiplied by F' to give actual
pixel brightnesses F{3*“ of the new image.

The next step is to combine the image Fi‘}ld, obtained in the previous iter-
ation, with the current image F};* to give the resultant image for the present
iteration Fj;:

Fij = gFj™ + (1 - g) "

where g is the gain factor, which is less than 1 and is altered throughout the

iteration process (the method for altering it is taken from MEM SATO, and so

may not be optimised for MEMVIS***). This combining of old and new images

serves to stabilise the iterative process, by introducing a kind of momentum

that prevents drastic changes in one iteration ruining the current solution.
The next step is to calculate the visibilities from the new image:

Vink = Z Py ok Bij

This step can also be speeded up by using the convolution method described
for back projection above. As before, it is necessary to rebin the image so that
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it has the same number of a pixels as P;; mi, which is equal to the number of
time bins for detector k.
The y? for this iteration can then be computed as

1 1 1 Re([/mk—[/’ )2 Im([/mk—[/’ )2
2 mk mk
e - — _|_
X - Ny Zk: N, ; 9 [ (O-lek)2 (0'1 )2

mk

where V! are the observed visibilities (i.e. those constructed from the counts
time series). If the change in x? between iterations is such that Ax?/x? < §,
then the smoothness parameter is incremented by a certain amount. The size
of the change depends on how much x? has changed since the last increment
in A. The iteration process will stop once x? is less than 1, or if the maximum
number of A iterations is reached. The most recent image is then turned into a
Cartesian map and returned to the calling routine.

6 Software details - new objects

MEMVIS has been written in an object oriented way, and (by design) has the
exact same input parameters as MEM SATO, though the way these parameters
are used may differ in MEMVIS.

Figure 77 shows the hierarchy of objects in MEMVIS with The MEMVIS ob-
jects have exactly the same organisation as the standard objects for dealing with
the standard (count-based) modulation patterns. The objects hsi modul_pattern
and hsi_modul profile have corresponding MEMVIS counterparts hsi_vismod pattern
and hsi_vismod profile. The hsi bproj object also has an analogous MEMVIS
object hsi_vismod bproj. When data is requested from these objects, they will
call the following routines: hsi memvis makepat, hsi memvis doprofile and
hsi memvis_dobproj.

All MEMVIS routines are in ssw/hessi/idl/image/memvis. Also in that
directory are several demonstration routines: hsi memvis_demo masuda, hsi memvis _demo_bignsmall,
hsi memvis demo_default and hsi memvis_demo_pntsrc_test. These can be
run from command line using .r | e.g.

SSWIDL> .r hsi memvis_demo masuda
If they don’t work let me know immediately (a.j.conway@open.ac.uk).

7 Future Work

The following items will be investigated:

1. Small offsets are present in the visibilities, these may be due to an error in
shifting to correct for the relative orientation between different detectors’
grids.

2. The systematic error in constructing the observed visibilities from the
observed counts needs to be measured, at present it is masked by the
small offsets.
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3. Several types of source structure (e.g. those in the demo) should be exam-

ined to see how accurately the algorithm is dividing the photons between
several sources in the same image.

. It would be desirable to fit the total flux as is done in MEM SATO.

. Several improvements in speed are possible, e.g. modpadskip as is used
in the annsec modulation patterns. Also, symmetry in the real/imaginary
parts and between the two halfs of the rotation are currently not exploited.

. The algorithm seems more robust to low photons counts than I would
expect. I believe this is due to the effective smoothing that takes place in
constructing the visibilities from the counts. Further investigation of why
this is so is needed, along with the systematic error introduced and the
effect on the final image.

. Investigate effect off changing various iteration parameters.
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