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Abstract. We describe a forward-fitting method that has been developed to reconstruct hard X-
ray images of solar flares from the Ramaty High-Energy Solar Spectroscopic Imager (RHESSI),
a Fourier imager with rotation-modulated collimators that was launched on 5 February 2002. The
forward-fitting method is based on geometric models that represent a spatial map by a superposition
of multiple source structures, which are quantified by circular gaussians (4 parameters per source),
elliptical gaussians (6 parameters), or curved ellipticals (7 parameters), designed to characterize
real solar flare hard X-ray maps with a minimum number of geometric elements. We describe and
demonstrate the use of the forward-fitting algorithm. We perform some 500 simulations of rotation-
modulated time profiles of the 9 RHESSI detectors, based on single and multiple source structures,
and perform their image reconstruction. We quantify the fidelity of the image reconstruction, as
function of photon statistics, and the accuracy of retrieved source positions, widths, and fluxes. We
outline applications for which the forward-fitting code is most suitable, such as measurements of the
energy-dependent altitude of energy loss near the limb, or footpoint separation during flares.

1. Introduction

Image reconstruction from RHESSI data can be performed with a number of meth-
ods, including backprojection, CLEAN, the maximum entropy method, pixon map-
ping, polar mapping, and forward-fitting. In this paper we describe the principles
of a forward-fitting algorithm that is currently implemented in the software. We
simulate RHESSI observations, perform image reconstructions, and compare the
test results with the input models, in order to quantify the fidelity of the recon-
structed images as a function of the count rate. These tests provide error bars on
the accuracy of retrieved source positions, sizes, or relative displacements in energy
and time.

This paper includes a brief definition of relevant instrumental parameters (Sec-
tion 2), the parameterization of images (Section 3), a description of the forward-
fitting code, numerical test results of image reconstruction from simulated data
(Section 4), and a summary (Section 5). More detailed information to some sec-
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tions is provided on the attached CD-ROM, also available at http://www.lmsal.com/
∼aschwand/ eprints/2002_fwdfit.

2. Instrument

2.1. INSTRUMENTAL DESCRIPTION OF RHESSI

Technical descriptions of the RHESSI instrument can be found in Lin et al. (1993,
1994, 1998) and Dennis et al. (1996). The RHESSI webpages (http://hessi.ssl.
berkeley.edu, http://hesperia.gsfc.nasa.gov/ rhessidatacenter/), contain the most
up-to-date information. Here we summarize the instrumental specifications that are
most relevant for image reconstruction. For a detailed description of the imaging
capabilities of RHESSI, the grid characteristics, the modulation patterns, and the
modulation profiles we refer to Hurford et al. (2002).

RHESSI employs the technique of Fourier-transform imaging with rotating mod-
ulation collimators, using a set of 9 bi-grid collimators with a grid period (pitch)
ranging from 34 µm to 2.6 mm, separated by a distance of 1550 mm between
front grids and rear grids. The grid pitch increases by a factor of

√
3 from one

grid to the next coarser one, yielding a FWHM resolution ranging from 2.26′′ to

2.26′′ × √
3

8 = 183′′. This defines the range of spatial scales over which RHESSI
is able to map. The full angular resolution of ≈ 2′′ is achieved at the lowest en-
ergies, up to � 100 keV. At higher energies, where the thickness of the tungsten
grids (Nos. 2–9) or molybdenum (Mb) grid (No. 1) is not sufficient to completely
absorb high-energy photons, the modulational efficiency is thus reduced, restricting
the spatial resolution to the spacing of the thicker, fully-absorbing grids, which is
≈ 35′′ above 1 MeV. The angular coverage of an image is thus 2′′ –183′′, while the
field of view includes the full Sun, as long as the spacecraft spin axis points within
≈ 12′ of the Sun center. The temporal resolution for highest quality images is half a
spacecraft rotation period (providing maximum uv-coverage in Fourier space), i.e.,
≈ 2.0 s, but ‘snapshot images’ with poorer uv-coverage can be obtained down to
tens of ms. The pointing of the spacecraft is determined by the Solar Aspect System
(SAS) which measures the direction to the Sun center to sub-second accuracy, and
by two redundant systems that measure the roll angles to< 3′ – a CCD system and
a PMT-based Roll Angle Aspect System (PMTRAS). Great care has been taken to
warrant that the relative twist of the finest grid pair is maintained to within 1′ by the
metering tube structure. Spectroscopy of hard X-rays and gamma rays is achieved
with internally segmented germanium detectors (GeDs), placed behind the bi-grid
collimators, having diameters of 71 mm and a length of 85 mm. The germanium
detectors are cooled down to 75 K, providing < 1 keV FWHM energy resolution
at 10 keV, increasing to ≈ 5 keV at 7 MeV (see Smith et al., 2002).
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2.2. DATA STRUCTURE OF OBSERVATIONS

RHESSI records every photon above a threshold energy of � 3 keV as a time-
tagged event up to a maximum rate of ≈ 50 000 s−1, while attenuation and deci-
mation schemes take place at higher rates to avoid pulse pileup effects. Thus, the
telemetry data contain photon event information for each of the 9 detectors, tagged
with a time accuracy of 1 µs (called Photon Event List).

For standard image processing, the time-tagged photon events are binned into
time intervals that resolve the grid-induced modulation due to the spinning space-
craft. The number of modulations per rotation depends on the angular distance r
of the observed source from the spacecraft spin axis, divided by the angular pitch
pl = 4.52′′√3

(l−1)
of the collimator (l = 1, . . . , 9),

Nmod
l = 4r

pl
= 0.88 r ′′√

3
(l−1)

, l = 1, . . . , 9 . (1)

For a maximum field of view of r ≤ 1◦ we record Nmod
1 = 3185 modulations for

the finest grid (l = 1) and Nmod
9 = 39 modulations for the coarsest grid (l = 9).

The required time binning to resolve at least 2 data points per modulation period is
thus

�tmod
l = T rot

2Nmod
l

= 0.6
( r ′′

3600′′
)−1√

3
(l−1)

ms , (2)

ranging from �tmod
1 � 0.6 ms for the finest grid to �tmod

9 � 50 ms for the coarsest
grid, for a spacecraft spin period of T rot = 4.0 s. A typical binning of the data is
done by the nearest numbers of powers of 2, i.e., the default number of binning
intervals varies from 128 (Detector 9) to 8192 (Detector 1), and the corresponding
time intervals range from 0.5 ms (Detector 1) to 32 ms (Detector 9). The values of
the detector pitch angles pl and the default time binning �ti are listed in Table I.
Thus the typical data structure used for image processing consists of 9 arrays of
modulation profiles Nobs

l (tk) for the detectors l = 1, . . . , 9 with variable number
of time bins, tk =, 1, . . . , Nl , ranging from N1 = 8192 to N9 = 128, amounting
to a total of

∑9
l=1Nl = 17, 792 data points per spacecraft rotation. This data set

of binned photon counts, along with the associated aspect variables, instrumen-
tal transmission parameters, amplitudes and phases, livetimes and other quantities
required for mapping, is called the Calibrated Event List in the RHESSI jargon.

3. Parameterization of Maps

The simulation of maps as well as the forward-fitting method require a parame-
terization of the geometry of source morphologies. Hard X-ray sources in solar
flares are known to appear as (often unresolved) point sources, double sources,
multiple sources, or parts of flare loops (Sakao, 1994; see also Yohkoh/HXT Image
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TABLE I

RHESSI data structure.

Detector Angular FWHM Modulation Data Time Minimum

No. pitch resolution per time binsb bin count ratec

rotationa Rmin
l

l pl αl Nmod
l

Nbin
l

�tl(ms) (s−1 SC−1)

1 4.52′′ 2.26′′ 3168 213 = 8192 0.512 900

2 7.84′′ 3.92′′ 1829 212 = 4096 1.024 450

3 13.57′′ 6.79′′ 1056 211 = 2048 2.048 220

4 23.5′′ 11.8′′ 609 210 = 1024 4.096 110

5 40.7′′ 20.4′′ 352 210 = 1024 4.096 110

6 70.5′′ 35.3′′ 203 29 = 512 8.192 54

7 122.2′′ 61.1′′ 117 29 = 512 8.192 72

8 211.6′′ 105.8′′ 68 28 = 256 16.384 38

9 366.5′′ 183.2′′ 39 27 = 128 32.768 17

aFor a source with a distance of 1◦ from spin axis.
bDefault values for time binning.
cMinimum count rate to produce detectable modulation, producing r.m.s. fluctuations of the
modulation profiles that exceed the Poisson fluctuations.

Catalogue by Kosugi et al., 1995, and Sato et al., 1998). We adopt the philosophy
that such maps can mathematically be represented as a superposition of a few
elementary geometric shapes.

3.1. GEOMETRY OF ELEMENTARY SOURCE STRUCTURES

The simplest shape is a point source, placed at location (xi, yi ), with a flux ampli-
tude fi . Every point source has also a finite width, regardless whether this width
represents the physical extent of the source or the apparent size of an unresolved
source, as rendered by the instrumental point-spread function. Thus, it is most
natural to characterize a point source with a gaussian width wi , so that its 2-
dimensional distribution in a map is defined by 4 parameters (xi, yi, fi, wi),

F(x, y) = fi exp

[
−(x − xi)

2 + (y − yi)
2

2w2
i

]
. (3)

In the next step, we generalize a circular gaussian geometry to an elliptical shape,
which can be defined by two additional parameters, the eccentricity ei and the
tilt angle αtilt

i . We define the departure from circularity by the ratio of the ellipse
half-axis wxi along the x-axis to the half-axis wyi along the y-axis (Figure 1, top),
and subtract the value of one to render the parameter zero for circular symmetry
(wxi = w

y

i ), i.e.,
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Figure 1. The parameterized model maps, using circular gaussians (4 parameters, xi , yi , wi, fi ),
elliptical gaussians (6 parameters, . . . , ei , α

tilt
i ), and curved ellipticals (7 parameters, . . . , ρcurv

i ),
are defined in the upper panels. The middle and lower rows show 4 examples with superpositions
of the basic geometric elements defined above (with 1, 2, 3, 4 elements, requiring 4, 8, 14, 18 free
parameters, respectively).

ei =
(
wxi

w
y

i

− 1

)
. (4)

The 2-dimensional distribution of an elliptical gaussian is then

F(x′′, y′′) = fi exp

[
−(x

′′ − xi)
2

2w2
i

− (y′′ − yi)
2

2w2
i

(ei + 1)2
]
. (5)

To obtain the 2-dimensional distribution of an elliptical gaussian in an arbitrary
orientation, the coordinates (x′′, y′′) aligned with the elliptical major and minor
axes have to be rotated by the tilt angle αtilt

i (defined anti-clockwise with respect to
the x-axis),

x = x′′ cos(αtilt
i )− y′′ sin(αtilt

i ), (6)

y = x′′ sin(αtilt
i )+ y′′ cos(αtilt

i ). (7)
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In order to provide geometric elements that can represent loop-like shapes we go a
step further and introduce curved gaussians, which require only one additional pa-
rameter, the curvature radius rcurv. It is mathematically more convenient to choose
the reciprocal curvature radius, because this way we have no singularity rcurv = ∞
for uncurved ellipticals or gaussians, and this additional parameter is then zero if
no curvature is wanted. We define a dimensionless parameter ρcurv

i by the ratio of
the gaussian width wi along the x-axis to the curvature radius rcurv

i ,

ρcurv
i = wi

rcurv
i

. (8)

For coordinate transformations from curved ellipse coordinates (x′′, y′′) into carte-
sian coordinates (x, y), it is most convenient to use the rotation angle αcurv that
measures the x-position on the curved x-axis with respect to the curvature center
(Figure 1, top right),

αcurv = x′′

rcurv
i

= x′′

wi
ρcurv
i . (9)

The transformation from curved ellipse coordinates (x′′, y′′) into cartesian coordi-
nates (x′, y′) is then simply

x′ = (rcurv
i + y′′) sin (αcurv), (10)

y′ = (rcurv
i + y′′) cos (αcurv). (11)

With a subsequent rotation by the orientation angle αtilt
i , the cartesian ellipse coor-

dinates (x′, y′) can then be rotated into the Cartesian reference system (x, y) (by
substituting (x′, y′) from Equations (10) and (11) into (x′′, y′′) of Equations (6)
and (7)).

3.2. MAP PARAMETERIZATION

We have now defined the general geometry of a single source with 7 free parame-
ters, which has the morphology of a curved gaussian in the most general form, but
can be reduced to 6 free parameters (in the form of an elliptical gaussian without
curvature), or to 4 parameters (in the form of a circular gaussian). The geometry of
these three shapes can be described with the same general 7-parameter formalism
(xi, yi, fi, wi, ei, αtilt

i , ρ
curv
i ), while setting a subset of the last three parameters to

zero will automatically reproduce the simpler shapes.
We define a map simply by a superposition of the 2-dimensional distributions

Fi(x, y;Pi) of the elementary shapes, defined by the parameter sets Pi = [xi, yi, fi ,
wi, ei, α

tilt
i , ρ

curv
i ],

F(x, y) =
ng∑
i=1

Fi(x, y;Pi), (12)
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with ng the number of gaussian sources (or elementary shapes). The total number
of free parameters of such a parameterized map is

nfree = ng × npar − 1, (13)

where npar represents the number of parameters per source (i.e., npar = 4 for circu-
lar gaussians, npar = 6 for elliptical gaussians, and npar = 7 for curved gaussians).
The total number of free parameters is reduced by 1, because the total flux of the
map can be normalized to unity [I norm(x, y) = I (x, y)/

∫
I (x, y) dx dy], having

the physical unit of 1 photon count per map. The total number of photons can be
obtained by summing the time profiles, Nphot

l = ∑Nl
k=1N

obs
l (tk) for each detector

l = 1, . . . , 9. A map in physical units of photons per pixel and per detector can
then simply be retrieved by scaling the normalized map with the averaged photon
number per detector, i.e., I (x, y) = I norm(x, y) × 〈Nphot

l 〉. The standard unit used
in RHESSI software is also normalized by time, the detector area, and arc sec2 of
a pixel, i.e., photons s−1 cm−2 arc sec−2.

Some examples of such parameterized maps are shown in Figure 1, including
a single gaussian source (4 parameters), double gaussian sources (8 parameters), a
double source with a loop (14 parameters), and a Masuda-type flare (Masuda et al.,
1994) with an additional above-the-loop-top source (18 parameters).

4. Forward-Fitting Algorithm

4.1. PIXELIZED AND UNPIXELIZED APPROACH

We describe now the mathematical and numerical formalism of the basic forward-
fitting method, as currently implemented in the RHESSI software (since release on
4 January 2000), a package in the Interactive Data Language (IDL)-based Solar
SoftWare (SSW) (Freeland and Handy, 1998). This approach is also called the
pixelized forward-fitting method because the spatial distribution of the photon flux
F(x, y) is modeled as a function of a coordinate grid (x, y) with regular spacing,
either in cartesian (x, y) or polar coordinates (r, ϑ). An unpixelized forward-fitting
method has been proposed, where an image of the photon flux can be recon-
structed with a set (i = 1, . . . , n) of n point or gaussian sources at positions
(xi, yi), without using the parameterization of a regular grid (x, y). This second
method is theoretically more efficient for image reconstruction, but is currently not
implemented in the RHESSI software.

4.2. THE BASIC STEPS OF THE ALGORITHM

The algorithm is basically defined by the input, which consists of a list of time-
tagged photon events from the 9 detectors (packed in telemetry files) and the
desired output in the form of a reconstructed map I (x, y). This map should be
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Figure 2. Flow chart of the numeric algorithm of forward fitting (see description of 10 basic steps in
Section 4.2).

consistent with the observed count-rate time profiles, within the expected Poisson
fluctuations. The algorithm consists of 10 basic steps (Figure 2). For the simula-
tions here, an additional step is required beforehand, which includes the simula-
tion of telemetry files from a model map (numbered as ‘step 0’ in the following
scheme).

Step 0: selection of a set of model parameters Pi, i = 0, . . . , nfree that define a
model map Imodel,sim(x, y). Simulation of a list of photon events that are randomly
distributed in time and reproduce the spatial 2D distribution prescribed by the
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model map. The time-tagged photon events are written out into telemetry files that
have the same format as observations telemetered down from the spacecraft.

Step 1: time intervals [t1, t2], energy intervals [E1, E2], image size [Nx,Ny],
image offset from Sun center [Xoffset, Yoffset], and pixel resolution �x are selected
for desired image reconstruction.

Step 2: from the telemetry files, a binned event list is created, and then from
the aspect solution, livetime calculations and instrumental calibration tables, a ca-
librated event list is created, Nobs(tk,Dl) (for time bins tk and detectors Dl, l =
1, . . . , 9), and the corresponding modulation patterns are calculated, Mijkl (for
each pixel xi, yj ).

Step 3: a back-projection (Hurford et al., 2002) is performed from the cali-
brated event list to obtain an initial first-guess map IBP (x, y) for the forward-fitting
procedure.

Step 4: the back-projection map IBP (x, y) is decomposed into circular source
components (see Figure 4 and description on CD-ROM) in order to determine
a first-guess value of the number (ng) of gaussian components and their spatial
positions. These are used to specify an initial set of gaussian parameters Pi, i =
0, . . . , nfree (for a small number of gaussian source components).

Step 5: based on the first-guess gaussian parameters Pi, i = 0, . . . , nfree, a first
model map Imodel1(x, y) is composed. It provides the input for the first iteration of
the forward-fitting procedure. We normalize the model map to 1 photon count per
image, i.e., by Imodel1,norm(x, y) = Imodel,1(x, y)/

∫
Imodel1(x, y) dx dy.

Step 6: the first model map Imodel1(xi, yj ) is multiplied with the modulation
pattern Mijkl to obtain the modulation time profile Pkl ,

Pmodel1(tk,Dl) = Mijkl I
model1,norm(xi, yj ) . (14)

This is then scaled into the same physical units as the observed time profiles, i.e.,
counts per time bin,

Nmodel1(tk,Dl) = Rphot�t(Dl)q
trans(Dl)P

model,1(tk,Dl) , (15)

where Rphot represents the photon counts per s and per subcollimator (s−1 SC−1),
�tk(Dl) is the time bin used for detector Dl , and q trans(Dl) is the bi-grid transmis-
sion factor of detector Dl .

Step 7: the values of the reduced χ2 (or C-statistic, which is currently imple-
mented in the code, see Appendix A for a description) is calculated between the
observed time profiles Nobs(tk,Dl) and the model time profiles Nmodel1(tk,Dl),

χ2 = 1

nt ′

nt ′∑
k′=1

[Nobs(tk′)−Nmodel(tk′)]2

[σmodel(tk′)]2
, (16)

where the time series tk from each detector Dl are concatenated [tk′ = tk (D1),
tk (D2), . . . , tk (D9)], k′ = 1, . . . , nt ′ to obtain a single χ2 value for a given image.
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The currently implemented method gives each spatial scale the same weight, by
averaging the χ2’s from each detector.

Step 8: the parameters Pi, i = 0, . . . , nfree are varied in all (nfree) dimensions
and the change of χ2 (or C-statistic), �C = C(Pi + �Pi) − C(Pi), is calculated.
A new parameter set P new

i = Pi − �Pi(∂C/∂Pi) is calculated from the steepest
gradient of χ2 in the nfree-dimensional parameter space, so that the new parameter
set P new

i points in the direction where C decreases most rapidly. The search for a
local minimum in the direction of the steepest gradient is performed by increasing
the steps �Pi by powers of 2 and using a cubic spline fit of C(P new

i ). The set of
parameters P new

i (min[C]) associated with the local minimum of C is used as the
starting point for the next iteration cycle of the forward-fitting procedure.

Step 9: the next model map Imodel2(xi, yj ) is calculated based on the new pa-
rameter set P new

i , i = 0, . . . , nfree and steps 6–8 are repeated iteratively until the
change in C converges, e.g., �C < 10−4 per iteration cycle.

Step 10: after n iterations, the final map Imodel,n(x, y) becomes the desired
reconstructed map of the sources. In the case of the simulations, the final map
Imodel,n(x, y) can be compared with the initial model Imodel,sim(x, y) used for creat-
ing the telemetry files (Step 0) to verify the fidelity of the reconstruction. In the case
of real observations, the final solution may be compared with maps reconstructed
using other methods such as CLEAN or the maximum entropy method (MEM). A
self-consistency criterion between the reconstructed map and the observations is
the convergence value of χ2 or C-statistic, which should have values near unity,
say within � 10%. If the χ2 or C-values are significantly above unity (provided
there is no convergence problem to the global minimum), this would indicate that
the model parameterization is not adequate to represent the data, and thus requires
a more complex model.

This outline is only a formal description of the basic steps of the forward-fitting
code (Figure 2). To understand the most efficient implementation, the accuracy
and limitations of the solutions, and the convergence behavior of the algorithm, we
provide more detailed information in the following subsections.

4.3. LIMITS SET BY POISSON FLUCTUATIONS

It is a property of RHESSI image reconstruction algorithms that parameter changes
are most significant in the first iteration steps, while later iterations near the conver-
gence limit are less efficient and essentially are dominated by Poisson fluctuations.
(For the purposes of this paper, we ignore background, cosmic rays and other types
of noise, which in many cases have been found to be smaller than the Poisson fluc-
tuations.) In the case of forward-fitting in particular, it is desirable to suppress those
computation-expensive parts of the calculations that bluntly fit the Poisson fluctu-
ations. A first important efficiency consideration is therefore to select only those
detectors with time bins large enough to have a reasonable count-to-fluctuation
ratio to be sensitive to the fitting algorithm.
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The time profiles of the finest collimators have the greatest Poisson fluctuations,
because with the standard RHESSI time-binning, the same number of photons
(per detector) is spread out over a larger number of time bins (by the require-
ment of resolving the rotational modulation). Ignoring background, the amplitude
of the fluctuations is entirely Poisson, i.e., count/fluctuations = √

Nphot, and the
ratio (for standard binning) is smaller for the finer grids, because it decreases as

C/F ∼
√
�tbin

i , where �tbin
i is the time bin length for detector i. For instance, if

the coarsest grid gives a count/fluctuations ratio of 100:1, it will be 12:1 for the
finest grid, because the default time bins vary by a factor of �tbin

9 /�tbin
1 = 64.

In order to decide which time profiles can be ignored in the forward-fitting
procedure without significant loss of information, we define a significance crite-
rion that is expressed by the ratio of its standard deviation σ r.m.s. to the expected
Poisson fluctuations σ Poisson. The r.m.s. fluctuation of a time profile Nobs(tk,Dl) is
composed of the variability due to the rotational modulation σmod and the photon
count statistic σ Poisson,

(σ r.m.s.)2 = (σmod)2 + (σ Poisson)2. (17)

For instance, when the variability due to rotational modulation, σmod, falls be-
low 20% of the counting fluctuations, σ Poisson, the combined r.m.s. variability,
σ r.m.s. = σ Poisson × √

1 + 0.22 = 1.02 σ Poisson, exceeds the Poisson fluctuations
by 2% only. Any fitting method based on a χ2-criterion becomes quite insensitive
at this level, because χ2 ∼ (σ Poisson)−2 (Equation (16)) varies then by 4% only,
which has little significance in judging the goodness of a fit. Therefore, we adopt a
threshold criterion of(

σ r.m.s.

σ Poisson

)
≥ 1.02, (18)

to select detectors that have time profiles with modulation large enough to be usable
by the forward-fitting procedure. This criterion is equivalent to(

σmod

σ Poisson

)
≥

√
(1.022 − 1) = 0.2 . (19)

The average counts per time bin is Nobs
l = Rphot�tlq

trans
l (see Equation (15)), while

the total number of events in the time interval (t2 − t1) is N tot
l = Rphot(t2 − t1)q trans

l .
For Poisson statistics, with n = N tot

l events and a mean of 〈x〉 = Nobs
l the standard

deviation from the mean is σ = √〈x〉 (Bevington, 1969, p. 33), and thus

σ Poisson
l =

√
Nobs
l = [Rphotq trans

l �tl]1/2. (20)

In Figure 3 we compare the r.m.s. σ Poisson
l with the fluctuations due to rotational

modulation σmod
l , which is

σmod
l ≈ 0.5 εmod

l Nobs
l (21)
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Figure 3. The r.m.s. fluctuations of observed time profiles Nobs(tk,Dl) as a function of the photon
count rate R (thick lines), modeled in terms of two components: the photon counting r.m.s. fluc-
tuations σPoisson ∼ √

R (thin lines), and the r.m.s. fluctuations due to the rotational modulation
σmod ∼ R (dashed lines). Each component is shown for each detector l, D1, . . . ,D9, where the
coarsest detectorD9 represents the topmost lines. Note that the photon Poisson fluctuations dominate
for small photon count rates Rl . The limit Rmin

l
where the rotational modulation exceeds 20% of

the Poisson fluctuations is indicated with a vertical line for each detector. These values of Rmin
l

,
which represent lower limits for the photon rate where rotational modulation is detectable in the time
profiles, are also listed in Table I.

for the 9 detectors (l = 1, . . . , 9) and modulation efficiency εmod
l (≤ 1.0). From

the requirement that the variability due to rotational modulations exceeds the Pois-
son fluctuations by 20% (Equation (19)), we can infer a requirement for a mini-
mum photon rate to produce significant modulations in the detectors. Combining
Equations (19)–(22) we find

N
obs,min
l ≥

(
0.2

0.5εmod
l

)2

= 0.16

(εmod
l )2

, (23)

which yields a minimum photon rate Rmin
l of

Rmin
l ≥ Nobs,min

q trans
l �tl

≈ 103

√
3
l−1 . (23)



RHESSI FORWARD FITTING 205

These limits are indicated in Figure 3 and tabulated in Table I, ranging fromRmin
1 ≥

900 counts s−1 SC−1 for the finest detector No. 1 to Rmin
9 ≥ 17 counts s−1 SC−1 for

the coarsest detector No. 9. These count rate limits are derived for 100% modula-
tion efficiency, but would be higher for source sizes that are comparable or larger
than the collimator resolution, where the modulation efficiency drastically drops.
They would also be higher at higher energies because the grids become transparent,
and at lower energies for the finest grids because of diffraction effects.

The count-rate limits Rmin
l for different detectors l (indicated in Figure 3 and

listed in Table I) save a lot of computational effort. For instance, if a weak flare with
a relatively low count rate of Rphot = 100 counts s−1 SC−1 is observed, we see im-
mediately (Table I) that this count rate is below the requirement Rmin

l of significant
modulation for detectors Nos. 1–5. We need therefore only to consider detector
Nos. 6–9 for image reconstruction. The number of time bins from detectors Nos. 6
–9 is

∑9
i=6 N

bin
i = 1408, and thus a factor of (17 792/1408) = 12.6 smaller

compared with the number of time bins from all detectors Nos. 1–9, making the
computation a factor of ≈ 12 faster (since the computation of modulation profiles
scales linearly with the number of time bins).

4.4. DECOMPOSITION OF BACKPROJECTION MAPS

For the first guess of source positions the forward-fitting algorithm makes use of
a backprojection map (Hurford et al., 2002), by iterative decomposition of the
strongest peaks in the backprojection map. The exact peak location (xi, yi) is
determined with sub-pixel accuracy by parabolic interpolation of the maximum in
both x- and y-direction. An example with a detailed description of the procedure
is given in Figure 4 on the CD-ROM.

4.5. PARAMETER OPTIMIZATION IN FORWARD-FITTING

The forward-fitting method requires the optimization of nfree parameters until the
modulation time profiles resulting from the model map are consistent with the
observed time profiles Nobs(tk,Dl). For simple maps, e.g., the examples shown in
Figure 1, this task consists in the optimization of 3–18 free parameters. The mini-
mization of the χ2 or C-statistic of a parameter set (Pi), i = 1, . . . , nfree requires
the calculation of a modulation profile Nmodel(tk,Dl) for each new trial of a model
map I (x, y;Pi ), in order to calculate the χ2 or C-statistic of a new parameter set
(Pi). We developed a variant of the multi-dimensional downhill simplex method
(Press et al., 1986, p. 289), which is described in some detail in Figure 6 on the
CD-ROM.

4.6. NUMERICAL SIMULATIONS AND TESTS

In this study we performed tests using some 500 simulations with image recon-
structions by the forward-fitting method. To obtain statistics on the accuracy of
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reconstruction we simulated basic maps that contain one or two circular gaussian
sources, which can be quantified by 4 or 8 free parameters. A few simulations with
more complex source topologies were also performed as a feasibility test, i.e. with
triple, quadruple, elliptical, and curved elliptical sources. The results of the tests are
reported in more detail in the accompanying CD-ROM (Figures 5–13). We tested
mainly the accuracy �ri of the reconstructed source positions (xi , yi), widths (wi),
and flux amplitudes (ai) for model maps with 1 or 2 gaussian sources, and obtained
uncertainties that scale with the square root of the count rate R,

�ri

wi
=

√
(xfit
i − xsim

i )2 + (yfit
i − ysim

i )2

wsim
i

= σr

(
R

104

)−1/2

, (24)

�wi

wi
= (wfit

i − wsim
i )

wsim
i

= σw

(
R

104

)−1/2

. (25)

The results can be summarized as follows. For double-source simulations, a for-
ward-fitting solution with two gaussians was found in 90 cases, using a fully auto-
mated computation mode without human interaction. For uncontaminated statistics
of errors, we excluded cases with insufficient separation and cases with weak
secondary sources. For a count rate of R = 104 counts s−1 SC−1, two gaussian
centroid positions could be reconstructed with automated forward-fitting with a
typical positional accuracy of σr ≈ 10–20% of their gaussian width, and a width
accuracy of σw ≈ 5%. The total photon flux was typically retrieved with an ac-
curacy of ≈ 1%. Overlapping double sources or weak sources with a contrast of
less than 1:20 are less reliably reconstructed. The details of the accuracy tests are
provided in Figures 8–13 on the accompanying CD-ROM.

4.7. APPLICATIONS

The six different image reconstruction algorithms currently supported by the
RHESSI software each have different advantages and disadvantages. Image recon-
struction with forward-fitting has the specific property that it places all the flux into
the prescribed number of gaussian source components, and thus has a high photo-
metric accuracy because no flux is spread into noisy residuals (ignoring the detector
background). Another specific property is that the determined source positions are
more stable than in other imaging algorithms. This is because the fitted gaussians
are sensitive to the centroid position. For these reasons, forward-fitting is especially
well suited to measure small differential changes of source positions in time or
energy. A possible application for small differential changes in source positions
as a function of time is the separation of flare loop footpoints. This is expected to
increase systematically in the Kopp–Pneuman model (Kopp and Pneuman, 1976)
due to the rise of the X-type reconnection point. Previous measurements, based on
Yohkoh HXT images, showed a mixed trend, where only half of the flares showed
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evidence for the predicted increase in footpoint separation with time (Sakao, 1998).
Another possible application for small differential changes in source positions is
the energy-dependent altitude of footpoint sources, which can be measured most
favorably near or above the limb. Such accurate height measurements can constrain
the energy loss of precipitating electrons in the chromosphere and can be used
to infer a chromospheric density model (Brown, Aschwanden, and Kontar, 2002;
Aschwanden, Brown, and Kontar, 2002).

5. Summary and Conclusions

We described a newly-developed forward-fitting method to reconstruct images from
the RHESSI telescope for simple source morphologies that can be represented by
a superposition of multiple gaussians. We performed some 500 numerical simula-
tions of model source geometries and compared the forward-fitted images with the
model images in order to quantify the fidelity of the image reconstruction, the accu-
racy of the retrieved physical parameters, the maximum spatial resolution, and the
convergence behavior. These tests, covered in detail in the accompanying RHESSI
CD-ROM, represent a basic reference for all other RHESSI image reconstruction
algorithms, providing error bars and quantitative uncertainties that are important
for the scientific interpretation of hard X-ray images from RHESSI. The results of
the forward-fitting method can be summarized as follows:

(1) Using circular, elliptical, and curved gaussians, most of the so far observed
hard X-ray maps of solar flares can be represented by a relatively small num-
ber of free parameters, e.g., nfree = 3 for a single source, nfree = 7 for double
sources, nfree = 14 for double footpoint flares with loop-top hard X-ray emission,
or nfree = 18 for Masuda-type flares. The current implementation of the forward-
fitting code is designed to reconstruct hard X-ray images for this variety of source
morphologies.

(2) The minimum count rate required for a detector to produce modulation large
enough for the current forward-fitting algorithm to work is approximately Rmin

l =
1000/

√
3
(i−1)

counts s−1 SC−1 for detector l = 1, . . . , 9, e.g., Rmin
1 ≈ 1000

counts s−1 SC−1 for the finest grid (detector No. 1), and Rmin
9 ≈10 counts s−1 SC−1

for the coarsest grid (detector No. 9). For a given flare event with count rate R,
detectors that have a count rate below this limit, Rmin

l < R, should be discarded for
image reconstruction by this method. This saves considerable computational effort.

(3) Test runs of forward-fitting with model maps containing a single gaussian
source show that the relative accuracy of most gaussian parameters scales with the
count/Poisson-fluctuation ratio, i.e., ∼ √

R, with R being the photon count rate.
The average accuracy in the reconstruction of single gaussian sources at a count
rate of R = 104 counts s−1 SC−1 is ≈ 5% (of the source width) for the position,
and ≈ 3% for the gaussian source width. The accuracy depends primarily on the
photon count rate and not at all on the chosen pixel size (as long as the source
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is larger than the half pixel size). Subpixel accuracies in source position down to
1% can be achieved for count rates of R ≈ 105 counts s−1 SC−1, slightly above
the value at which the RHESSI attenuators automatically switch in. This allows
efficient mapping to be performed with relative large pixel sizes without losing
accuracy.

(4) Test runs of forward-fitting with model maps containing double gaussian
sources demonstrate that the positions and widths can be reconstructed with almost
the same accuracy as single source maps, unless there are source confusion prob-
lems or strong contrast (� 1:20 for the weaker source). We find that the forward-
fitting code converges to a χ2 or C-statistic value that is equally consistent with the
data as the model.

(5) The maximum spatial resolution that can be obtained with the forward-
fitting technique for high count rates is FWHMmin ≈ 0.8′′, which is about a factor
of 3 below the nominal resolution of the finest grid, i.e., FWHMres

1 = 2.3′′.
(6) We find that the forward-fitting algorithm virtually always converges to the

same solution as the model (used for the simulation of the telemetry data). The final
χ2- and C-statistic values reached at the convergence limit, which are found in the
range of 0.95 � C � 1.1, are constrained by the Poisson fluctuation statistics of a
particular event, and not by the convergence behavior of the forward-fitting code.

(7) Forward-fitting is especially well suited to measure small differential changes
of source positions in time or energy. Possible applications are energy-dependent
altitude measurements of energy loss near the limb, or footpoint separations during
flares.

Future work with the forward-fitting method will include (1) the simulation
of RHESSI telemetry data with more complex source morphologies (i.e., curved
loops, Masuda-type flares), (2) combined spatial-spectral imaging, (3) combined
spatial-temporal imaging, (4) fast imaging on time intervals shorter than a half
spacecraft spin period, and quantitative comparisons with other RHESSI imaging
methods.
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Appendix
χ2 and C-Statistic for Sparse Sampling

An observed time series of photon counts, f obs(t), which is binned into time inter-
vals of length �t , so that the number ni = f obs[ti < t < ti + �t] represents the
photon counts in bin [ti , ti + �t], is modeled by an analytical function, f model(t),
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which predicts an expectation value ei = f model[ti < t < ti+�t] of photon counts
in time bin i. In the limit of large-number counts, ni � 0, Poisson statistics can
be approximated by a gaussian distribution, which predicts an r.m.s. fluctuation of
σi = √

ei ≈ √
ni . The goodness of fit of a model can then be evaluated by the

well-known χ2-statistic,

χ2 = 1

N

N∑
i=1

(ni − ei)
2

σ 2
i

= 1

N

N∑
i=1

(ni − ei)
2

ei
, (A1)

yielding a normalized value of χ2 ≈ 1 in the case when the model is consistent
with the data, within the uncertainties of the expected fluctuations.

For sparse sampling, in particular when the observed time series ni contains
zero’s or few counts, say ni � 10, e.g., as it is the case for the default timebins of
the finest RHESSI collimators, where the total photon counts are binned into some
212 = 4096 time bins (for the finest grids) to resolve the rotational modulation,
the gaussian χ2-statistic is not appropriate anymore. Photon counting statistics for
sparse sampling can be derived from the general probability function P as outlined
by Cash (1979), which is

P =
N∏
i=1

e
ni
i e

−ei

ni ! (A2)

for a particular result ni given the correct set of ei . The likelihood ratio, called C-
statistic by Cash (1979), can be expressed in logarithmic form from Equation (A2),

CCash = −2 lnP = −2
N∑
i=1

(ni ln ei − ei − ln ni !) . (A3)

Let the theoretical model ei(.1, . . . ,.p) be defined by p free parameters .i, i =
1, . . . , p. The best-fitting model is found by varying all p parameters .1, . . . ,.p
until the C-statistic reaches a minimum, which we denote by (Cmin)p. Now, dur-
ing the iterative fitting procedure, only a partial subset of model parameters, say
q parameters (with q < p), may have already converged to the true solution,
.T1 , . . . ,.

T
p , so that .1, . . . ,.q are set to .T1 , . . . ,.

T
q , while the remaining

p−q parameters, .q+1, . . . ,.p , still need to be varied until a global minimum of
C is reached. We denote this partial solution, where p−q parameters have already
converged to the true solution .Ti , with the value (Cmin)

T
p−q . According to Cash,

quoting the theorem of Wilks (1938, 1963), the difference

�C = (Cmin)
T
p−q − (Cmin)p (A4)

will be distributed as χ2 with q degrees of freedom. Therefore, the quantity�C can
be used to establish a confidence criterion of the model ei to the data ni . Following
Cash (1979), the term ln(ni !) of Equation (A3) drops out in the difference �C, be-
cause only the parameters ei(.1, . . . ,.p) are varied during the fitting procedure.
Thus, it is more convenient to use the simplified statistic
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Csimplified = −2 lnP = −2
N∑
i=1

(ni ln ei − ei) . (A5)

For the evaluation of the difference �C in Equation (A4) we have the partially
optimized term (Cmin)

T
p−q ,

(Cmin)
T
p−q = −2

N∑
i=1

(ni ln (ei)
T
p−q − (ei)

T
p−q) , (A6)

and the absolute minimum (Cmin)p, which represents the asymptotic limit when
the data ni perfectly match the model, i.e., ei = ni ,

(Cmin)p = −2
N∑
i=1

[ni ln (ni)− ni] . (A7)

The combination of Equation (A4)–(A6) yields then

�C = −2
N∑
i=1

[ni ln (ei)− ei − ni ln (ni)+ ni] . (A8)

Instead of the reduced χ2-statistic (A1), we can therefore use the equally simple
C-statistic (where we drop the symbol � for brevity),

C := 1

N
�C = 2

N

N∑
i=1

[
ni ln

(
ni

ei

)
− (ni − ei)

]
. (A9)

This form has the advantage that, in addition to being asymptotic to χ2, C vanishes
identically when the model fits the data exactly. Numerical care has to be taken for
the time bins that contain zeros in the data, ni = 0, in which case the mathematical
relation ni ln (ni) = 0 has to be used to avoid the singularity ln (ni) �→ ∞. On the
other hand, a singularity could arise when the model predicts zero counts, ei = 0,
but the observed counts are not zero, ni �= 0, because the term − ni ln (ei) yields
then infinity. It seems therefore to be recommendable to restrict the model fit to
time intervals with a finite probability for photon counts, i.e., ei > 0.
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