

High Energy Solar Spectroscopic Imager (HESSI)

ATTITUDE CONTROL SUBSYSTEM (ACS) TRAINING

JANUARY 16, 2001

DIANE LI GLENN CREAMER

1

INTRODUCTORY NOTES

E-Mail Address : diane.li@specastro.com stan.fernandes@specastro.com All Units Are in SI (kg-m-sec) Unless Otherwise Stated

Spectrum Astro Has Responsibility for Changes to Any ACS Parameters

CONTENTS

ACS OVERVIEW

High Energy Solar Spectroscopic Imager (HESSI)

ACS Description

ACS Performance Requirements

HESSI Timelines and Sequence of Events

HESSI On-Orbit Configuration

HESSI Phasing and Orientation

ACS Flight Software Architecture

ACS Modes and Mode Transitions

Event Sequence to Normal Operations

Simulation Results

On-Orbit Balance Operations

ACS DESCRIPTION

Normal Mode Operation Using FSS, MAG and Torqrods

- Spin-Stabilized at 15 RPM
- Exclusive Magnetic Control
- Active Sun-Pointing (Precession) Control to < 0.2°
- Active Nutation Control
- Spin Rate Stability < 180 arcseconds in 10 revs

Initial Acquisition Using CSS, FSS, MAG and Torqrods

- Null Transverse Rates and Establishes Low Spin Rate
- Autonomous Sun Acquisition From Nominal Tip-off Orientation

Mass Balance In Idle Mode Using SAS, IAD

On-orbit Inertia Adjustment to Align Imager with Spin Axis

ACS PERFORMANCE REQUIREMENTS

[Requirement	Capability	Require		
Parameter			Source	Implementation	Verification Method
Spacecraft Attitude Stabilization	Spin stabilized	Comply	System Specification	ACS	Analysis/Operation
Spacecraft Spin Rate	15 RPM	15 ± 2 RPM	System Specification	ACS	Analysis
Sun Pointing Control	< 0.2 degrees	0.14 degrees	System Specification	ACS, SMS, FSS PFS (#1110-EW-T10163)	Analysis
Spin Rate Stability	180 arcseconds in 10 revs	125 arcseconds in 10 revs while in Sun	System Specification	ACS	Analysis
SAS Data Compatibility	SAS as backup to FSS	SAS can not be used for ACS	System Specification	ACS	Operation
Maximum LV Tip-Off Rate	4 deg/sec in transverse axes	6 deg/sec	System Specification	ACS	Analysis
Initial Sun Acquisition	The S/C shall autonomously acquire the Sun from the worst Tip-Off orientation & rate upon separation from the LV	Comply	System Specification	ACS	Analysis
CSS Sun Vector Measurement Range	The CSS suite shall provide 4π steradian coverage	Comply	System Specification	ACS, SMS, CSS PFS (#1110-EW-T10164)	Analysis

FSW TIMELINES AND SEQUENCE OF EVENTS

High Energy Solar Spectroscopic Imager (HESSI)

RTS0: Init	ial Operatio	ns RTS			
Sep +	≱p + hh:mm:ss		Command Function	Comments	
25	0:00:25	FSW	ACS Power Bus Switch ON	Post-Separation Sequence	
26	0:00:26	PCB	Magnetometer Power ON		
27	0:00:27	PCB	Fine Sun Sensor Power ON		
28	0:00:28	PCB	NE Heater Power Bus Switch ON		
29	0:00:29	PCB	SSR Heater Power Enable		
30	0:00:30	PCB	Battery Heater Power Enable	Heaters Turn-on	
31	0:00:31	PCB	Torque Rod Heaters Power Enable		
32	0:00:32	PCB	FSS Electronics Heater Power Enable		
33	0:00:33	PCB	Transponder Heater Power Enable		
34	0:00:34	PCB	SEM Heater Power Enable		
403	0:06:43	PCB	ACS Acquisition Mode	Start Sun Acquisition	
4631	1:17:11	FSW	Execute LEO Downlink RTS	Berkeley Pass 1 (AOS-60s)	
10734	2:58:54	FSW	Execute LEO Downlink RTS	Berkeley Pass 2 (AOS-60s)	
16853	4:40:53	FSW	Execute LEO Downlink RTS	Berkeley Pass 3 (AOS-60s)	
22974	6:22:54	FSW	Execute LEO Downlink RTS	Berkeley Pass 4 (AOS-60s)	
29173	8:06:13	FSW	Execute LEO Downlink RTS	Berkeley Pass 5 (AOS-60s)	
79625	22:07:05	FSW	Execute LEO Downlink RTS	Berkeley Pass 6 (AOS-60s)	

7

ADB RELEASE TIMELINES AND SEQUENCE OF EVENTS

		ADB Separation Sequence				
45	45 0:00:45 Release Mechanism Actuate		Release Mechanism Actuate	Time		
1	0:00:01		Minimum Delay Between Con	nmands		
Sep +	hh:mm:ss	HCD	Command Function	State	Action	Event
0	0:00:00	N/A	ADB Senses LV Separation			Separation
30	0:00:30	HCD08	Primary Enable	Enable	30 second delay from sep	
31	0:00:31	HCD04	+ X Upper Release	Release	± X Upper Primary On	
76	0:01:16	HCD04	± X Upper Release	Standby	± X Upper Primary Off	± X Nominal Break Upper Bolt
77	0:01:17	HCD08	Primary Enable	Disable	Disable Primary Power	
78	0:01:18	HCD09	Redundant Enable	Enable	Enable Redundant Power	
79	0:01:19	HCD04	± X Upper Release	Release	± X Upper Redundant On	
124	0:02:04	HCD04	± X Upper Release	Standby	± X Upper Redundant Off	± X Contingency Break Upper Bolt
125	0:02:05	HCD09	Redundant Enable	Disable	Disable Redundant Power	
126	0:02:06	HCD08	Primary Enable	Enable	Enable Primary Power	
127	0:02:07	HCD05	± Y Upper Release	Release	± Y Upper Primary On	
172	0:02:52	HCD05	± Y Upper Release	Standby	± Y Upper Primary Off	± Y Nominal Break Upper Bolt
173	0:02:53	HCD08	Primary Enable	Disable	Disable Primary Power	
174	0:02:54	HCD09	Redundant Enable	Enable	Enable Redundant Power	
175	0:02:55	HCD05	± Y Upper Release	Release	± Y Upper Redundant On	
220	0:03:40	HCD05	± Y Upper Release	Standby	± Y Upper Redundant Off	± Y Contingency Break Upper Bolt
221	0:03:41	HCD09	Redundant Enable	Disable	Disable Redundant Power	
222	0:03:42	HCD08	Primary Enable	Enable	Enable Primary Power	
223	0:03:43	HCD06	± X Lower Release	Release	± X Lower Primary On	
268	0:04:28	HCD06	± X Lower Release	Standby	± X Lower Primary Off	± X Wing Nominal Release
269	0:04:29	HCD08	Primary Enable	Disable	Disable Primary Power	
270	0:04:30	HCD09	Redundant Enable	Enable	Enable Redundant Power	
271	0:04:31	HCD06	± X Lower Release	Release	± X Lower Redundant On	
316	0:05:16	HCD06	± X Lower Release	Standby	± X Lower Redundant Off	± X Wing Contingency Release
317	0:05:17	HCD09	Redundant Enable	Disable	Disable Redundant Power	
318	0:05:18	HCD08	Primary Enable	Enable	Enable Primary Power	
319	0:05:19	HCD07	± Y Lower Release	Release	± Y Lower Primary On	
364	0:06:04	HCD07	± Y Lower Release	Standby	± Y Lower Primary Off	± Y Wing Nominal Release
365	0:06:05	HCD08	Primary Enable	Disable	Disable Primary Power	
366	0:06:06	HCD09	Redundant Enable	Enable	Enable Redundant Power	
367	0:06:07	HCD07	± Y Lower Release	Release	± Y Lower Redundant On	
412	0:06:52	HCD07	± Y Lower Release	Standby	± Y Lower Redundant Off	± Y Wing Contingency Release
413	0:06:53	HCD09	Redundant Enable	Disable	Disable Redundant Power	

ON-ORBIT CONFIGURATION

ACS PHASING AND ORIENTATION

SPECTRUMASTRO

ACS FLIGHT SOFTWARE ARCHITECTURE

ACS MODES AND MODE DEFINITION

High Energy Solar Spectroscopic Imager (HESSI)

Acquisition (Wake Up) Mode

Establishes Desired Spin Rate and Damps Transverse Rates

Precession Mode Establishes Sun-pointing Orientation

Normal Mode

Maintains Sun-pointing Orientation and Nominal Spin Rate; Encompasses Fine Precession, Nutation, and Spin Rate Control

Spin Mode

Establishes Desired Spin Rate

Idle Mode Disables Control Until Ground Intervention

Balance Operations

Balances Spacecraft Using IADs to Obtain Pure Spin About Imager Axis

ACS MODES TRANSITION LOGIC

	Acquisition	Precession	Normal	Spin	ldle
Acquisition		Time since LV release > 2.5 hours	^β < 5.0 deg AND Ω > 0.12 rpm	None	Ground Command
Precession	None		^β < 0.2 deg AND ^{14.5<Ω} <15.5rpm	None	Ground Command OR { β < 5 deg AND NOT 14.5<Ω <15.5 rpm }
Normal	None	None		None	Ground Command OR β > 0.5 deg OR NOT 13.5<Ω <16.5 rpm
Spin	None	None	$^{14.5<\Omega}$ <15.5rpm AND β < 0.2 deg		Ground Command OR {14.5<Ω <15.5 rpm AND NOT β < 0.2 deg }
ldle	Ground Cmd	Ground Cmd	Ground Cmd	Ground Cmd	

Note 1: Autonomous Mode Transitions can Only Occur When the Sun Is in Presence

Note 2: Persistence Checks are Performed for All Autonomous Mode Transitions

Note 3: **b** = Angle Between Spin Axis and Sun

w = Measured Spin Rate

ACS HARDWARE UTILIZATION

SPECTRUMASTRO

	Acquisition	Precession	Spin	Normal	ldle	Balance
Spin-Axis TQR	Y	Y	Ν	Y (pointing)	On Request	Ν
Transverse TQR	Y	N	Y	Y (spin rate)	On Request	Ν
CSS	N	Y	N	N	On Request	Ν
FSS	N	Y	Y	Y	On Request	Y
MAG	Y	Y	Y	Y	On Request	Ν
IAD	N	N	N	N	N	Y
SAS	N	N	Ν	N	On Request	Y

Notes:

- 1. All sensors sampled at 8 Hz PACI rate
- 2. When FSS Sun Presence Indicator is high, FSS output supersedes CSS output
- 3. MAG Processing Includes Compensation for Torgrod-Generated Magnetic Field
 - Initial Compensation Matrix Generated from Ground Test
 - Matrix Obtained by Energizing One Torgrod at a Time and Measuring Field Change
- 4. For Normal Mode Spin Rate Control is Limited to 10 A-m^2
- 5. SAS is Utilized as Primary Balancing Sensor
- 6. SAS can Not Be Used for ACS control

EVENT SEQUENCE TO NORMAL OPERATIONS

NOMINAL SUN ACQUISITION

Nominal LV Tip-off Conditions:

- Momentum Vector within 10 deg of Sun
- 4 deg/sec Transverse Rate
- 17 deg/sec Spin Rate

30-second Array Deployment with 2-second Delay between Arrays Adds 2° of Additional Nutation Initial 2.5 hour Acquisition Mode Establishes Spin Rate and Damps Transverse Rates (B-dot) FSS Utilized When Sun Cone Angle is within 32 Degrees

30-minute Eclipse Once per Orbit with Precession Control Disabled

WORST ATTITUDE SUN ACQUISITION

Â,

Worst LV Tip-off Conditions:

- Momentum Vector within 180 deg of Sun
- 4 deg/sec Transverse Rate
- 17 deg/sec Spin Rate

30-second Array Deployment with 2-second Delay between Arrays Adds 2° of Additional Nutation Initial 2.5 hour Acquisition Mode Establishes Spin Rate and Damps Transverse Rates FSS Utilized When Sun Cone Angle is within 32 Degrees 30-minute Eclipse Once per Orbit with Precession Control Disabled

SPIN RATE ESTIMATION

SOLAR ARRAY FREQUENCE ANALYSIS RESULTS

High Energy Solar Spectroscopic Imager (HESSI)

Dynamics Model Assumptions:

- One Rigid Central Body with Zero Cross Product MOI
- 4 Rigid Panels Symmetrically Located
- Spring-damper Joints
 - 1% Damping Ratio
- 4 Solar Panels at Nominal 5° Angle

Analysis Results:

- HESSI 1st Mode Frequency 0.79 Hz per Structural Analysis
- For Nominal 15 rpm Spin:
 - Unstable for <= 0.43Hz 1st Mode Frequency
 - Min Nutation Frequency Occurs at 0.43Hz
- HESSI Stiffness > 3 times of Unstable Stiffness
- For 10 rpm
 - Unstable for <= 0.29Hz S/A 1st Mode Frequencies
- For 5 rpm
 - Unstable for <= 0.14Hz S/A 1st Mode Frequencies

Nutation Freq vs. S/A 1st Mode Freq

ON-ORBIT BALANCE -CAPABILITY

High Energy Solar Spectroscopic Imager (HESSI)

Objective

Provide On-orbit Adjustment to Compensate for Offset Between Principal Spin Axis and SAS
Boresight Axis

Key Issues

- Adjustment Sensitivity
 - 0.00043 cm Linear Adjustment Resolution Equates to 0.0022° Spin Axis Angle Resolution
- A 1° Spin Axis Capture Range Equates to
 - 455 Steps
 - 0.55 deg Array Deflection
 - Linear Adjustment of 0.2 cm
 - Net Tip Deflection of 2.2 cm
- Full Travel Range is 2.54 cm Equating to 12 Degrees of Spin Axis Range
- Estimates Show That Approximately 5% of the Rigid Body Deflection is Lost to Centrifugal Force

ACS HARDWARE

ACS INTERFACE BLOCK DIAGRAM

FINE SUN SENSOR HEAD

Supplier: Adcole Supplier Part Number: Model 41660 Quantity: 1 Mass: 0.29 kg Size: 9.6 x 9.7 x 3.6 cm Power: n/a Performance: • Operational Field of View: $\pm 32^{\circ}$ cone • Sun Presence Field of View: $\pm 31.5^{\circ} \pm 0.5^{\circ}$ • Measurement Resolution:

0.005° for 8-bit D/A Converter, Dictated by since/cosine Signals

• Measurement Accuracy:

 0.05° (3 σ) in ± 10° Half Cone

 $0.1^{\circ} (3\sigma)$ Outside Half Cone

Detector layout:

- 6 Gray-Coded Coarse Bits
- 4 Fine Bits

FINE SUN SENSOR ELECTRONICS

FSS FOV

High Energy Solar Spectroscopic Imager (HESSI)

Sensor Data Processing Inputs: α and β Specified by an Input Pattern. Model Converts This Pattern to Interface Type Signals (Gray Coded Coarse Angle Data Plus sin and cos Fine Angle Data) Outputs: Processing Software Recovers the Original α and β Angles FSS alpha and beta inputs Incident Light Projections onto FSS X, Y Reticles FSS Processing Outputs 40 0.2 30 0.15 30 FSS beta input : b-input(deg) 0 -10 -0 0 -10 20 0.1 20 Y Projection on Reticle 0.05 10 beta (deg) 0 -0.05 -10 -0.1 -20 -30 -0.15 -30 -0.2 L -0.2 -40 -40 -40 -40 -20 0 20 40 -0.1 0 0.1 0.2 -20 0 20 40 FSS alpha input : a-input(deg) X Projection on Reticle alpha (deg)

COARSE SUN SENSOR

High Energy Solar Spectroscopic Imager (HESSI)

Supplier: Adcole Supplier Part Number: Model 29450 Quantity: 8 Mass: 0.011 kg Size: 2.8 dia x 1.2 cm Power: n/a Measurand: Cosine of Angle Between Cell Normal and Sun **Performance:** Operational Field of View: $\pm 80^{\circ}$ Cone • Sun Presence Field of View: ± 90° Cone Peak Cell Current Output: 1.317 milli-Amps Interface: Analog Output with a Two-Wire (+,-) Interface to PACI

CSS COVERAGE

High Energy Solar Spectroscopic Imager (HESSI)

HESSI CSS Configuration:

- Nominal Solar Wing Positions are 5 deg Tilting Down
- •Two Cells Per Wing with Cell Normal Pointing ±35 deg Relative to Wing Panel

Shown for Nominal Solar Wing Positions:

- Coverage for Each CSS Limited to $\pm 70^{\circ}$ Cone Angle (34% of Full Sun) to Minimize Earth Albedo Effect
- Albedo Ranges from 27% (Summer) to 37% (Winter) at Peak Latitudes with an Orbit Average of 25%

Note:

• Four Small Regions with One Cell Coverage Caused by Solar Panel 5 deg Tilt Below Horizontal Plane

Numbers represent sensor coverage in each region

THREE-AXIS MAGNETOMETER

High Energy Solar Spectroscopic Imager (HESSI)

Supplier: Ithaco Supplier Part Number: IM-103 Quantity: 1 Mass: 0.231 kg Size: 15.5 x 4.2 x 3.8 cm 0.95 W Power: Magnetic Field Range: ± 600 mG in Three Axes Measurement Accuracy: 4 mG (3s) Scale Factor: 8.3333 V/G >100 Hz Bandwidth: **Outputs:**

- •Three Voltages Proportional to B field
- One Voltage Proportional to Temperature

TORQUE RODS

Supplier:	Ithaco	
Supplier P	art Number: ⁻	TR60CFR
Quantity:	3	
Mass:	1.7 kg	
Size:	2.8 dia x 63.8	3 cm
Power (Sta	andby):	0 W
Power (Or	bit Average):	0.2 W
Power (Op	perating):	1.3 W
Linear mo	ment output:	60 Amp-m ²
Scale facto	or:	0.25 Amp-m ² /milli-Amp
Coil resist	ance:	40 Ohms
Coil induc	tance:	2.5 Henries
Time cons	stant:	62.5 msec

TQROD FIELD STRENGTH - ANALYTICAL RESULTS

For a Single 60 Am^2 torqrod, fully energized,
the Field Strength is Shown.1.0

•Residual fields are ~1% of the last energized field

For HESSI Configuration

When Three Torque Rods are Energized to 60 Am^2, the Magnetic Field Strength at MAG Location is Calculated as

$$\mathbf{B} = \begin{bmatrix} 41.6\\21.2\\-18.3 \end{bmatrix} \text{ milliGauss}$$

Torque Rod Compensation Matrix Limits This Torque Rod Magnetic Field Effect On the MAG Output.

TORQUE ROD COMPENSATION MATRIX - FROM TESTING

ACS SOFTWARE

ACS Operation Modes

ACS FSW Diagrams

ACS Mode Selection

ACS FSW Input/Output Modules and Variables

Input Processing

Mode Control Logic and Hot Bench Performance Results

ACS Commands and Parameters

ACS OPERATING MODES

Operating Mode	Purpose	Sensor Used	Actuator Used
1. Acquisition	Damps Transverse Rates and Establishes a Desired Low Spin Rate	MAG	All Three TQRs
2. Precession	Points Spin Axis to Sun and Reduces Nutation	CSS, FSS, MAG	ZTQR
3. Normal	Maintains Sun-Pointing Orientation and Nominal Spin Rate; Encompasses Fine Precession, Nutation, and Spin Rate Control	FSS, MAG	All Three TQRs
4. Spin	Establishes Desired Spin Rate	FSS, MAG	All Three TQRs
5. Idle	Disables Control Until Ground Intervention		
Balance	Balances Spacecraft Using IADs to Obtain Pure Spin About Imager Axis	FSS, SAS	IAD

ACS FSW TOP LEVEL DIAGRAM

SPECTRUMASTRO

MODE SELECTION

ACS FSW INPUT/OUTPUT MODULES

SPECTRUMASTRO

ACS FSW INPUT VARIABLES

ACS FSW Input Variables From CDHS - 38 Parameters

#	Variable	Туре	Description	Range	19	xcounts1	Integer	SAS x count 1	±128
1	MAG1	Float	MAG x output	+ 5	20	xcounts2	Integer	SAS x count 2	±128
2	MAC2	Float	MAC v output	± 5 volta	21	xcounts3	Integer	SAS x count 3	±128
2	MAG2	Float	MAG y output	+ 5	22	xcounts4	Integer	SAS x count 4	\pm 1 2 8
	MAG5	Float		\pm 5 volts	23	xcounts5	Integer	SAS x count 5	±128
4	CSSI	Float		0 0.0013 amps	24	xcounts6	Integer	SAS x count 6	±128
5	CSS2	Float	CSS 2 (CX10) output	0 = 0.0013 amps	25	xcounts7	Integer	SAS x count 7	±128
6	CSS3	Float	CSS 3 (CX01) output	0 = 0.0013 amps	26	xcounts8	Integer	SAS x count 8	±128
7	CSS4	Float	CSS 4 (CX00) output	0 = 0.0013 amps	27	vcounts1	Integer	SAS y count 1	±128
8	CSS5	Float	CSS 5 (CY11) output	0 - 0.0013 amps	28	vcounts?	Integer	SAS y count 2	±128
9	CSS6	Float	CSS 6 (CY10) output	0 - 0.0013 amps	20	vcounts3	Integer	SAS y count 3	±128
10	CSS7	Float	CSS 7 (CY01) output	0 - 0.0013 amps	29	veounts4	Integer	SAS y count 4	+128
11	CSS8	Float	CSS 8 (CY00) output	0 - 0.0013 amps	21	ycounts4	Integer	SAS y count 4	+128
12	coarse_xg	Integer	FSS x-axis coarse data (Gray code)	0 - 64 (equivalent decimal)	31	ycounts5	Integer	SAS y count 5	+128
13	coarse_yg	Integer	FSS y-axis coarse data (Gray code)	0 - 64 (equivalent decimal)	32	ycounts6	Integer	SAS y count 6	128
14	sinx	Float	FSS x-axis sin of angle	± 5 volts	33	ycounts7	Integer	SAS y count 7	±128
15	cosx	Float	FSS x-axis cos of angle	± 5 volts	34	ycounts8	Integer	SAS y count 8	±128
16	sinv	Float	FSS y-axis sin of angle	± 5 volts	35	SAS_time	Float	SAS time tag	0 - 1 e+8 seconds
17	cosy	Float	FSS y-axis cos of angle	± 5 volts	36	SC_time	Float	Spacecraft time	0 - 1 e+8 seconds
18	FSS SPI	Integer	FSS Sup Presence Indicator	0, 1	37	ground_mode	Integer	Ground command mode	1-5
10	155_511	megel		ļ · · · · · · · · · · · · · · · · · · ·	38	Sun_sensor_toggle	Integer	Sun sensor toggle switch (0=FSS,1=CSS)	0,1

ACS FSW OUTPUT VARIABLES

High Energy Solar Spectroscopic Imager (HESSI)

SPECTRUMASTRO

ACS Telemetry Variables

- 22 Parameters

- 1 flag

#	Variable	Туре	Description	Range
1	Ix	Float	Current to TORX	± 0.25 amp
2	Iv	Float	Current to TORY	± 0.25 amp
3	Iz	Float	Current to TQRZ	± 0.25 amp
4	spin_rate	Float	Spin rate estimate	± 2 rad/sec
5	mode	Integer	SC operation Mode	1 – 5
6	MAGx	Float	Magnetic field along x-axis	\pm 0.0001 tesla
7	MAGy	Float	Magnetic field along y-axis	\pm 0.0001 tesla
8	MAGz	Float	Magnetic field along z-axis	± 0.0001 tesla
9	CSSx	Float	CSS Sun vector along x-axis	± 1
10	CSSy	Float	CSS Sun vector along y-axis	± 1
11	CSSz	Float	CSS Sun vector along z-axis	± 1
12	FSSx	Float	FSS Sun vector along x-axis	± 1
13	FSSy	Float	FSS Sun vector along y-axis	± 1
14	FSSz	Float	FSS Sun vector along z-axis	± 1
15	CSS SPI	Integer	CSS Sun Presence Indicator	0, 1
16	WX	Float	Transverse rate estimate along x-axis	\pm 0.1 rad/sec
17	wy	Float	Transverse rate estimate along y-axis	\pm 0.1 rad/sec
18	to idle flag	Integer	Flag describing transition to Idle Mode	0 - 5
19	SASx	Float	SAS Sun vector along x-axis	± 1
20	SASy	Float	SAS Sun vector along y-axis	± 1
21	SASz	Float	SAS Sun vector along z-axis	± 1
22	SAS_SPI	Integer	SAS Sun Presence Indicator	0, 1
23	Css unusual flag	Integer	CSS Unusual Setting Indicator	0, 1

to_idle_flag	Description
0	No transition to Idle
1	Not used
2	Precession to Idle: $\beta < 5$ deg AND NOT 14.5 $< \Omega < 15.5$ rpm
3	Normal to Idle: $\beta > 0.5 \text{ deg}$
4	Normal to Idle: NOT $13.5 < \Omega < 16.5$ rpm
5	Spin to Idle: $14.5 < \Omega < 15.5$ rpm ^{A N} D ^{NOT β} < 0.2 deg

INPUT PROCESSING -FSS PROCESSING

INPUT PROCESSING -CSS PROCESSING

INPUT PROCESSING -SAS PROCESSING

MODE CONTROL LOGIC - TOP LEVEL

MODE CONTROL LOGIC - ACQUISITION MODE

MODE CONTROL LOGIC -PRECESSION MODE

High Energy Solar Spectroscopic Imager (HESSI)

CSS SPI = 1 **Coarse Precession Control** First-order CSS S \mathbf{S}_{f} Filters $[M_x]$ $M_{x} = 0$ $M_{y} | (A - m^2)$ \mathbf{B}_{f} First-order \blacktriangleright M_v = 0 M_z Filters $M_z = -K_A B_{zf} + K_{P CSS} sign (B_{xf} S_y - B_{yf} S_x)$ ± 60 A - m² $\begin{bmatrix} \hat{u}_{xf} = 0 \end{bmatrix}$ \mathbf{B}_{f} 2nd-order $\dot{u}_{yf} = 0$ Filters Fine SPI = 1 Use FSS or SAS **Fine Precession Control** Sf Estimate 2nd-order First-order ù_x,ù Filters ω_x, ω_v Filters ► [M₁] ù _{xf, yf} i **S** $M_{y} | (A - m^2)$ First-order S_{f} M_z Fine S $\begin{bmatrix} \hat{\mathbf{o}}_{x} \\ \hat{\mathbf{o}}_{y} \end{bmatrix} = \mathbf{K}_{\mathbf{P}_{-}\mathbf{FSS}} \hat{\mathbf{U}} \begin{bmatrix} \mathbf{S}_{xf} \\ \mathbf{S}_{yf} \end{bmatrix} - \mathbf{K}_{\mathbf{N}_{-}\mathbf{FSS}} \begin{bmatrix} \hat{\mathbf{u}}_{xf} \\ \hat{\mathbf{u}}_{yf} \end{bmatrix}$ Filters $M_{x} = 0$ $M_{y} = 0$ Ω $\mathbf{M}_{z} = \left| \hat{\mathbf{e}} \right| \left(\frac{\mathbf{B}_{xf} \hat{\mathbf{o}}_{y} - \mathbf{B}_{yf} \hat{\mathbf{o}}_{x}}{(\mathbf{B}_{xf}^{2} + \mathbf{B}_{yf}^{2})} \right)$ ∫ù _{xf} ∣ (rad/s) è l [ù _{yf} j è ± 60 A - m² \mathbf{B}_{f} Bxv

HOT BENCH TEST RESULTS FOR NOMINAL INITIAL ACQUISITION

High Energy Solar Spectroscopic Imager (HESSI)

SPECTRUMASTRO

Nominal Initial Conditions:

•At Tip-off:

•Body Rates (4, 4, 17) deg/sec •Momentum Vector 5 deg from Sun •After Solar Array Deployment:

•Body Rates (2.6, 2.6, 3.2) deg/sec •Momentum Vector 7 deg from Sun

Event Sequence:

- Immediately Following CPU Boot-Up ACS Begins Operation in Acquisition Mode
- Torgue Rods Inactive for Initial 10 minutes to Allow for **Proper Solar Array Deployment**
- After 2.5 Hours, ACS Transitions to Precession Mode
- If Sun Error < 5 deg and Spin Rate > 0.12rpm within 2.5 hours. ACS will Transitions to Normal Mode then to Idle Mode (see Mode Transition Logic)
- Once the Sun is within 5 deg of Z-axis, ACS Transitions to Idle Mode.

Note:

- Assume Eclipses Occur during the First 30 Minutes of Each 97 Min Orbit. Torque Rods are Disabled while in Eclipse
- Spin Rate Estimation is Poor for Low Spin Rates

HESSI ACS Hot Bench Test: FSW Telemetry Data Plot

MODE CONTROL LOGIC -NORMAL MODE

High Energy Solar Spectroscopic Imager (HESSI)

Fine SPI = 1 On/Off If On for AND **Fine S** First-order $S_{f} cos^{-1} (\sqrt{1-S_x^2-S_y^2})$ First-order Precession 4 samples Filters **Control On** Filters Estimate 2nd-order S_{f} First-order $\begin{bmatrix} \hat{\mathbf{0}}_{x} \\ \hat{\mathbf{0}}_{y} \end{bmatrix} = \mathbf{K}_{\mathbf{P}_{-}\mathbf{FSS}} \overset{\circ}{\mathbf{U}} \begin{bmatrix} \mathbf{S}_{xf} \\ \mathbf{S}_{yf} \end{bmatrix} - \mathbf{K}_{\mathbf{N}_{-}\mathbf{FSS}} \begin{bmatrix} \hat{\mathbf{u}}_{xf} \\ \hat{\mathbf{u}}_{yf} \end{bmatrix}$ Filters Filters ω_x, ω_v M, ۲ù, Ω $\mathbf{M}_{z} = |\hat{\mathbf{e}}| \left(\frac{\mathbf{B}_{xf} \hat{\mathbf{o}}_{y} - \mathbf{B}_{yf} \hat{\mathbf{o}}_{x}}{(\mathbf{D}^{2} - \mathbf{D}^{2})} \right)$ ù, ù _{yf} Use FSS or SAS \mathbf{S}_{f} ± 30 A - m² è iù _{xf} \mathbf{B}_{f} Bxy ù _{yf} $\begin{bmatrix} \mathbf{M}_{\mathrm{x}} \\ \mathbf{M}_{\mathrm{y}} \end{bmatrix} = \begin{bmatrix} \mathbf{K}_{\mathbf{S}} \frac{\Omega_{\mathrm{s}} - \hat{\Omega}}{(B_{\mathrm{xf}}^{2} + B_{\mathrm{yf}}^{2})} B_{\mathrm{yf}} \\ - \mathbf{K}_{\mathbf{S}} \frac{\Omega_{\mathrm{s}} - \Omega}{(B_{\mathrm{xf}}^{2} + B_{\mathrm{z}}^{2})} B_{\mathrm{xf}} \end{bmatrix}$ Fine SPI = 1 **Spin Control** On AND $\left|\Omega_{s}-\Omega\right|$ $[M_x]$ $\pm 10A - m^2$ M_v

HOT BENCH TEST RESULTS FOR **NORMAL MODE - LOW DUTY CYCLE**

High Energy Solar Spectroscopic Imager (HESSI)

SPECTRUMASTRO

Viewing

HESSI ACS Hot Bench Test: FSW Telemetry Data Plot **Normal Mission Mode Performance:** 0.2 • Low Torgrod Duty Cycle 0.2 0.2 0.15 0.15 0.1 0.1 0.05 0 •Min Hysteresis Bound 0.05 deg •Max Hysteresis Bounds 0.1 deg • Sun Error <0.15 deg • 50% Z-Torque Rod Duty-Cycle During Sun 0 2 3 5 7 1 4 6 8 Z-Tqrod Command (amp) 0.3 0.2 0.1 0 -0 -0.22 3 5 7 0 4 6 8 1 Time (hours)

HOT BENCH TEST RESULTS FOR **NORMAL MODE - HIGH DUTY CYCLE**

High Energy Solar Spectroscopic Imager (HESSI)

SPECTRUMASTRO

Viewing

Normal Mission Mode Performance: HESSI ACS Hot Bench Test: FSW Telemetry Data Plot • High Torgrod Duty Cycle 0.2 FSS Sun Error (deg) •Min Hysteresis Bound 0.0 deg 0.15 •Max Hysteresis Bounds 0.1 deg • Sun Pointing Error is Reduced by Half 0.1 • 100% Z-Torque Rod Duty-Cycle During Sun 0.05 0 2 3 4 5 7 6 0 8 Z-Tqrod Command (amp) 0.3 0.2 0.1 0 -0.1 -0.2 2 3 4 5 6 7 8 0 1 Time (hours)

MODE CONTROL LOGIC -SPIN MODE

HOT BENCH TEST RESULTS FOR SPIN MODE

High Energy Solar Spectroscopic Imager (HESSI)

Spin Up Performance:

- SC Spins Up from 0.25 rpm to 14.5 rpm in 50 Hours
- Sun Error is Controlled During Spin-Up

Comments:

• Several Smaller Steps of Spin-Up may Be Desirable During On-Orbit Operation to Reduce the Peak Sun Error

ACS COMMANDS

High Energy Solar Spectroscopic Imager (HESSI)

 ACS FSW Related Commands:

 ACSSETMODE AUTO
 - Allows Autonomous Mode Selection

 ACQUISITION
 - To Damp Out Transverse Rates and Establish Desired Low Spin Rate

 PRECESSION
 - To Establish Sun Pointing Orientation

 NORMAL
 - To Maintain Nominal Spin Rate and Sun Pointing

 SPIN
 - To Establish Desired Spin Rate

 IDLE
 - To Disable Control Until Ground Intervention

 ACSSUNSENSOR
 FSS - Select FSS as the Fine Sun Sensor for ACS Controls

 SAS - Select SAS as the Fine Sun Sensor for ACS Controls
 Strongly Recommended: Consult Spectrum ACS Engineers Prior to Selecting SAS for ACS Control.

ACS COMMAND PARAMETERS 1-30

High Energy Solar Spectroscopic Imager (HESSI)

Parameter Type Default Value Description Range Present Default ACS mode command Initial Mode setting 1-5 Integer Parameter Table 0.0005 amp CSS threshold 0 - 0.0012 css thresh Float 3 fss_bias_x Float 0 FSS bias along x-axis ± 1 - 153 Parameters 0 ± 1 4 fss bias v Float FSS bias along v-axis ± 0.0001 5 mag bias x Float 0 tesla MAG bias along x-axis Note: The Default Values MAG bias along v-axis ± 0.0001 mag_bias_y Float 0 tesla 6 7 2.5 sec SAS data delay 0 - 5.0sas delav Float of Some Parameters may ± 20 8 tqr_comp11 Float Torgrod compensation matrix component 0.671259 volts/amp Need to be Changed. ± 20 9 tqr_comp12 Float -0.06135 volts/amp Torgrod compensation matrix component ± 20 Float 0.881908 volts/amp Torgrod compensation matrix component 10 tar comp13 ± 20 Float 0.161945 volts/amp Torgrod compensation matrix component Torgrod compensation 11 tqr_comp21 + 20tqr_comp22 12 Float 1.026166 volts/amp Torgrod compensation matrix component matrix components ± 20 Float -0.36266 volts/amp Torgrod compensation matrix component 13 tar comp23 ± 20 14 tqr_comp31 Float 0.424606 volts/amp Torgrod compensation matrix component tqr_comp32 ± 20 15 Float -0.41646 volts/amp Torgrod compensation matrix component ± 20 16 tar comp33 Float -0.69728 volts/amp Torgrod compensation matrix component 60 amp-m^2 0 - 10017 tqr_sat_high Float Torgrod high saturation level 30 amp-m^2 0 - 10018 tgr sat point low Float Torgrod low saturation level in pointing 10 amp-m^2 19 tor sat spin low Float Torgrod low saturation level in spin 0 - 10020 acq spin com Float 0.035 rad/sec Commanded spin rate during Acquisition 0 - 0.121 norm spin com Float 1.57 rad/sec Commanded spin rate during Normal operation 0 - 21e+11 amp-m²-sec/tesla 0 - 1e + 1122 acq_gain Double Acquisition control gain ACS controls 23 Float 1e+4 amp-m² Coarse Precession control gain 0 - 1e + 6coarse prec gain parameters 0 - 51.5<u>N-m-sec</u> Fine Precession control gain 24 fine prec gain Float 2.5 fine nut gain Float 4.5 N-m-sec Fine nutation control gain 0 - 201 amp-m²-sec/tesla 26 Float Spin control gain 0 - 10spin gain 0.001745 rad 0 - 0.00427 point high Float High setting for pointing hysteresis logic 0 - 0.002point low 0.0008725 rad 28 Float Low setting for pointing hysteresis logic point check* 0.1 29 Integer Initial state of pointing hysteresis logic 0.1 rad/sec 0 - 0.430 delta spin high Float High setting for spin hysteresis logic

ACS COMMAND PARAMETERS 31-60

	-		•				
		31	delta spin low	Float	0.05 rad/sec	Low setting for spin hysteresis logic	0 - 0.2
		32	spin_check*	Integer	1	Initial state of spin hysteresis logic	0, 1
		33	point acq2norm	Float	0.0873 rad	Transition pointing error from Acquisition to Normal	0 - 0.2
ACS controls		34	point prec2norm	Float	0.0035 rad	Transition pointing error from Precession to Normal	0 - 0.01
ACS controls	$\langle \rangle$	35	point norm2idle	Float	0.0088 rad	Transition pointing error from Normal to Idle	0 - 0.01
parameters		36	point spin2norm	Float	0.0035 rad	Transition pointing error from Spin to Normal	0 - 0.01
		37	rate acq2norm	Float	0.0126 rad/sec	Transition rate from Acquisition to Normal	0 - 0.1
		38	drate prec2norm	Float	0.05 rad/sec	Transition rate error from Precession to Normal	0 - 0.5
		39	drate_norm2idle	Float	0.15 rad/sec	Transition rate error from Normal to Idle	0 - 0.5
	\langle	40	drate spin2norm	Float	0.05 rad/sec	Transition rate error from Spin to Normal	0 - 0.5
	(41	time acq2norm	Float	600 sec	Transition time from Acquisition to Normal	0 - 1800
		42	time_acq2prec	Float	9000 sec	Transition time from Acquisition to Precession	0 - 18000
		43	time prec2norm	Float	60	Transition time from Precession to Normal	0 - 600
		44	time prec2idle	Float	600 sec	Transition time from Precession to Idle	0 - 1800
Parsistance check		45	time_norm2idle_ang	Float	2 sec	Transition time from Normal to Idle due to pointing error	0 - 600
naramotore	\mathbf{i}	46	time norm2idle rate	Float	2 sec	Transition time from Normal to Idle due to rate error	0 - 600
parameters		47	time_spin2norm	Float	2 sec	Transition time from Spin to Normal	0 - 600
		48	time spin2idle	Float	2 sec	Transition time from Spin to Idle	0 - 600
		49	time init2tgr	Float	600 sec	Initial Torgrod waiting time	0 - 1800
		50	point err chk Float 4 cycles Persistent pointing e		Persistent pointing error check time in Normal mode	0 - 600	
	$\overline{\ }$	51	time bootwait	Float	120 sec	Initial mode transition wait time	0 - 1800
	(52	sa x1 ang	Float	5 deg	+X solar panel rotation angle	0 - 10
		53	sa y1 ang	Float	5 deg	+Y solar panel rotation angle	0 - 10
Solar array		54	sa_x0_ang	Float	5 deg	-X solar panel rotation angle	0 - 10
settings and CSS)	55	sa y0 ang	Float	5 deg	-Y solar panel rotation angle	0 - 10
		56	sa normal ang	Float	35 deg	Angle between CSS normal vector and solar panel	0 – 90
		57	css_sf_amp	Float	0.0013 amp	CSS scale factor	0 - 0.002
		58	switch_css_fss	Integer	0	Switch between CSS and FSS	0,1
	$\overline{\ }$					0 – use FSS, 1 – use CSS	
		59	west dct limit	Float	1.5 sec	B field multiple zero crossing check time	0 - 200
		60	west dw limit	Float	2 rad/sec	Spin rate estimation upper limit	0 - 2

ACS COMMAND PARAMETERS 61-90

SPECTRUMASTRO

			T	-	2	1	
	6	61	tgr sf m2I	Float	-0.00382 1/m ²	Torque rod scale factor	-0.007 - 0
	(62	mag_sig_biasx	Float	-0.0210 volts	MAG signal X-axis bias	± 0.2
		63	mag_sig_biasy	Float	-0.0222 volts	MAG signal Y-axis bias	± 0.2
		64	mag sig biasz	Float	-0.0078 volts	MAG signal Z-axis bias	± 0.2
		65	mag_sig_invsfx	Float	1.228894e-5 tesla/volts	MAG signal X-axis scale factor inverse	0-1e-4
		66	mag sig invsfy	Float	1.198365e-5 tesla/volts	MAG signal Y-axis scale factor inverse	0 - 1e - 4
		67	mag sig invsfz	Float	1.206855e-5 tesla/volts	MAG signal Z-axis scale factor inverse	0 - 1e-4
		68	mag sig mis11	Float	1.00038	Inverse MAG misalignment matrix component	0-2
		69	mag_sig_mis12	Float	0.01063	Inverse MAG misalignment matrix component	± 0.2
		70	mag_sig_mis13	Float	-0.02069	Inverse MAG misalignment matrix component	± 0.2
		71	mag sig mis21	Float	0.01699	Inverse MAG misalignment matrix component	± 0.2
		72	mag sig mis22	Float	1.00029	Inverse MAG misalignment matrix component	0-2
lisalignment matrix	/	73	mag sig mis23	Float	-0.00372	Inverse MAG misalignment matrix component	± 0.2
omponents	\prec	74	mag sig mis31	Float	-0.00820	Inverse MAG misalignment matrix component	± 0.2
		75	mag_sig_mis32	Float	0.01281	Inverse MAG misalignment matrix component	± 0.2
		76	mag sig mis33	Float	0.99990	Inverse MAG misalignment matrix component	0-2
		77	fss_mis11	Float	1	FSS misalignment matrix component	± 2
		78	fss mis12	Float	0	FSS misalignment matrix component	± 0.2
		79	fss mis13	Float	0	FSS misalignment matrix component	± 0.2
		80	fss_mis21	Float	0	FSS misalignment matrix component	± 0.2
		81	fss_mis22	Float	1	FSS misalignment matrix component	± 2
		82	fss mis23	Float	0	FSS misalignment matrix component	± 0.2
		83	fss_mis31	Float	0	FSS misalignment matrix component	± 0. 2
		84	fss_mis32	Float	0	FSS misalignment matrix component	± 0.2
		85	fss mis33	Float	1	FSS misalignment matrix component	± 2
		86	mag bias z	Float	0 tesla	MAG bias along z-axis	± 0.0001
	ſ	87	b filter zerox	Float	0	MAGx filter zero	0-0.9999
Filter gains	J	88	b filter polex	Float	0.9681	MAGx filter pole	0 - 0.9999
	Ĵ	89	b filter gainx	Float	0.03195	MAGx filter gain	0 - 2
	Į	90	b filter zeroy	Float	0	MAGy filter zero	0 - 0.9999

ACS COMMAND PARAMETERS 91-120

SPECTRUMASTRO

High Energy Solar Spectroscopic Imager (HESSI)

	91	b filter poley	Float	0.9681	MAGy filter pole	0 – 0.9999
	92	2 b_filter_gainy Float 0.03195		MAGy filter gain	0 - 2	
	93	b filter zeroz	Float	0	MAGz filter zero	0 – 0.9999
	94	b filter polez	Float	0.9681	MAGz filter pole	0 – 0.9999
	95	b filter gainz	Float	0.03195	MAGz filter gain	0 - 2
	96	b der z1x	Float	-1.3333	MAGx 2 nd order derivative coefficient z1	± 5
	97	b_der_z2x	Float	0.3333	MAGx 2 nd order derivative coefficient z2	± 5
	98	b_der_p1x	Float	0	MAGx 2 nd order derivative coefficient p1	± 5
	99	b der p2x	Float	0	MAGx 2 nd order derivative coefficient p2	± 5
	100	b der kx	Float	12	MAGx 2 nd order derivative gain k	± 50
	101	b_der_z1y	Float	-1.3333	MAGy 2 nd order derivative coefficient z1	± 5
	102	b_der_z2y	Float	0.3333	MAGy 2 nd order derivative coefficient z2	± 5
	103	b der p1y	Float	0	MAGy 2 nd order derivative coefficient p1	± 5
	104	b der p2y	Float	0	MAGy 2 nd order derivative coefficient p2	± 5
/	105	b_der_ky	Float	12	MAGy 2 nd order derivative gain k	± 50
	106	b_der_z1z	Float	-1.3333	MAGz 2 nd order derivative coefficient z1	± 5
	107	b_der_z2z	Float	0.3333	MAGz 2 nd order derivative coefficient z2	± 5
	108	b der plz	Float	0	MAGz 2 nd order derivative coefficient p1	± 5
	109	b_der_p2z	Float	0	MAGz 2 nd order derivative coefficient p2	± 5
	110	b_der_kz	Float	12	MAGz 2 nd order derivative gain k	± 50
	111	fss filter zerox	Float	0	FSSx filter zero	0 – 0.9999
	112	fss filter polex	Float	0.3333	FSSx filter pole	0 – 0.9999
	113	fss_filter_gainx	Float	0.6667	FSSx filter gain	0 - 2
	114	fss filter zeroy	Float	0	FSSy filter zero	0 – 0.9999
	115	fss filter poley	Float	0.3333	FSSy filter pole	0 – 0.9999
	116	fss filter gainy	Float	0.6667	FSSy filter gain	0 - 2
	117	point filter zero	Float	0	Pointing error filter zero	0 – 0.9999
	118	point filter pole	Float	0.83333	Pointing error filter pole	0 – 0.9999
	119	point filter gain	Float	0.1667	Pointing error filter gain	0 - 2
	120	fss_der_z1x	Float	-1.3333	FSSx 2 nd order derivative coefficient z1	± 5

Filter gains

ACS COMMAND PARAMETERS 121-153

SPECTRUMASTRO

	/	$\left(\right)$	121	fss_der_z2x	Float	0.3333	FSSx 2 nd order derivative coefficient z2	± 5
	(122	fss_der_p1x	Float	0	FSSx 2 nd order derivative coefficient p1	± 5
			123	fss_der_p2x	Float	0	FSSx 2 nd order derivative coefficient p2	± 5
			124	fss_der_kx	Float	12	FSSx 2^{nd} order derivative gain k	± 50
			125	fss_der_z1y	Float	-1.3333	FSSy 2 nd order derivative coefficient z1	± 5
			126	fss_der_z2y	Float	0.3333	FSSy 2 nd order derivative coefficient z2	± 5
			127	fss_der_p1y	Float	0	FSSy 2 nd order derivative coefficient p1	± 5
			128	fss der p2y	Float	0	FSSy 2^{nd} order derivative coefficient p2	± 5
			129	fss der ky	Float	12	$FSSy 2^{nd}$ order derivative gain k	± 50
			130	w filter zerox	Float	0	Transverse rate wx filter zero	0 – 0.9999
			131	w_filter_polex	Float	0.83333	Transverse rate wx filter pole	0 - 0.9999
			132	w filter gainx	Float	0.1667	Transverse rate wx filter gain	0 - 2
			133	w_filter_zeroy	Float	0	Transverse rate wy filter zero	0 - 0.9999
			134	w filter poley	Float	0.83333	Transverse rate wy filter pole	0 - 0.9999
			135	w filter gainy	Float	0.1667	Transverse rate wy filter gain	0 - 2
			136	css_filter_zerox	Float	0	CSSx filter zero	0 - 0.9999
ilter gains	\prec		137	css filter polex	Float	0.9681	CSSx filter pole	0 – 0.9999
J			138	css_filter_gainx	Float	0.03195	CSSx filter gain	0 - 2
	1		139	css filter zeroy	Float	0	CSSy filter zero	0 – 0.9999
			140	css_filter_poley	Float	0.9681	CSSy filter pole	0 – 0.9999
			141	css_filter_gainy	Float	0.03195	CSSy filter gain	0 - 2
			142	mag filter zerox	Float	0	MAG processing MAGx filter zero	0 – 0.9999
			143	mag_filter_polex	Float	0.5	MAG processing MAGx filter pole	0 – 0.9999
			144	mag filter gainx	Float	0.5	MAG processing MAGx filter gain	0 - 2
			145	mag_filter_zeroy	Float	0	MAG processing MAGy filter zero	0 – 0.9999
			146	mag filter poley	Float	0.5	MAG processing MAGy filter pole	0 – 0.9999
			147	mag_filter_gainy	Float	0.5	MAG processing MAGy filter gain	0 - 2
			148	mag_filter_zeroz	Float	0	MAG processing MAGz filter zero	0 – 0.9999
			149	mag filter polez	Float	0.5	MAG processing MAGz filter pole	0 – 0.9999
			150	mag_filter_gainz	Float	0.5	MAG processing MAGz filter gain	0 - 2
			151	west filter zero	Float	0	Spin rate estimation filter zero	0 – 0.9999
			152	west_filter_pole	Float	0.9901	Spin rate estimation filter pole	0 - 0.9999
	\	\setminus	153	west filter gain	Float	0.009901	Spin rate estimation filter gain	0 - 2

ACS OPERATIONS

Normal Operations Screens Safe Mode Anomalies and Contingencies Under voltage

NORMAL OPERATIONS

During Normal Mission Operation:

- Mode: Normal
- FSS Sun Pointing Error < 0.2 deg
- Spin Rate Estimation: 15 ± 0.5 rpm
- Magnetic Field Vector Updating Constantly
- Z-Torque Rod Firing for Precession
- X, Y-axis Torque Rod Firing for Spin Rate Regulation

During Initial Acquisition Phase:

- Initial Mode After Separation Should Be Acquisition
- After 2.5 Hours, the SC Should Transition to Precession Mode
- When CSS Sees the Sun (SPI is High), CSS Error Should be Decreasing
- FSS Error Should be Updating whenever FSS Sees the Sun and CSS/FSS Error <= 32 deg
- Magnetometer Measurement Should be Updating Constantly
- X, Y and Z Torque Rods Should be Activated in Acquisition Mode All the Times
- Z Torque Rod Should Be Activated in Precession Mode When SC is In the Sun

SCREEN - PACI PAGE

Analog Inputs: •FSS Analog: (-5 ~ 5 Volts) •MAG: (-5 ~ 5) Volts •MAG Temperature: (-40 ~ 90°C) (0 ~ 5V) •FSS SOH: (0 ~ 5 Volts) • 4 Torgrod Currents:	Temperature S AD590s: (deg C •FSE •2 IAD •4 Torque rods •4 S/A Wings	ensors C)	IAD Positions: • (-10 ~ 3 Volts) CSS Current Inputs: • 8 Channel (0 ~ 1300μA)			 Digital Inputs: FSS Sun Presence: (0,1) FSS Coarse Gray-Code Bits: (0000 ~ 1111) FSS Coarse Bit Decimal Values: (0 ~ 63) FSS Coarse Bit Hex Values: (0000 ~ FFFF) 		
(-0.2292 ~ 0.2292 A)					paci			
	PID 1 PACI Data	ANO	OC TNS	*** PACI DEVICE	E TELEMET	RY ***		
	FSS SINE1: -0.001	BAT CURREN	IUG INS [: 0.800]	FSE TEMP:	23,282	BATT TEMP:	22,043	XMIT SWITCH: FWD
	FSS COS1: -0.011	BAT MIDVOL	T: 14,415	IAD1 TEMP:	19,781	S/A WING 1:	127,237	XMIT POWER: OFF
	MAG X: 1,234	BATT TEMP	1: 19,603	IAD2 TEMP:	22,493	S/A WING 2:	127,237	RCV SUBLOCK: NO_LOCK
	MAG Y: -0.006	BATT TEMP :	2: 20,215	SEM TEMP:	27,472	S/A WING 3:	127,237	RCV CARLOCK: NO_LOCK
	MAG Z: -2.431	BAT VOLTAGI	E: 31,801	DC/DC TEMP:	30,430	S/A WING 4:	127,237	FSE SUNPRES: NOT_IN_SUN
BA	TT PRESS1: 4939.01	CCB XSISTO	R: 9,984	OCXO TEMP:	28,015	IAD1 POSN:	-4,603	SSR CMDRDY: NOT_READY
BF	TT PRESS2: 4696.58	SA CURREN	f: -0.009	SSR TEMP:	23,035	IAD2 POSN:	-3,612	CCB MSMODE2: MISSION
RO	VR STRESS: 0,116	VT CURVE	5,921 E:	TRQX TEMP:	18,500	SPARE PRT:	9,984	CCB MSMODE1: MISSION
RC	V STRNGTH: 0.848	ESSBUS CU	R: 0,919	TRQY TEMP:	16,626	CSS		PCB IDPUPWR: OFF
XM	T VOLTAGE: 4,982	ESSBUS -15	/: -15.039	TRQZ TEMP:	20,422	CHANNEL 1:	2,946	PCB OC TRIP: OK
XM	T PWRAMPT: 18.857	NEB1 BUSCU	R: 0,001	XPNDR TEMP:	22,789	CHANNEL 2:	2,946	PCB UV TRIP: OK
×	IT PWRSPYT: 19.055	IPDU HTRBU	5: -0,009	DECK TEMP:	19,929	CHANNEL 3:	2,946	CPU PWR STS: ON
	MT RF PWR: -0,006	NEB2 BUSCU	R: 0,050	IDPU TEMP:	20,718	CHANNEL 4:	2,946	CCB TEMPSEL: A
	MAG TEMP: 26,721	IDPU CUR	R: -0.009	IPC TEMP:	21,606	CHANNEL 5:	2,946	FSS DIG 1: 0001
	FSE SUH: 3,532		R: 0,001	CPC TEMP:	20,472	CHANNEL 6:	2,946	FSS DIG 2: 0000
	55K +5V: -0.011		R: -0.019	SPEL TEMP:	18,697	CHANNEL 7:	2,946	FSS DIG 1: 1
	55K +3,3V: -0,006		RT 0,000	CRAPE TMP1+	-49 405	CHHNNEL 8:	3,262	FSS DIG 2: 0 Cholo 0-15 : EEEZ
	CPU +5V+ 5 011		R+ 0.000	SPARE TMP2+	-49,400			Chole $16-31 + FE09$
TR	CD Z(RED): 0.000	ESSBUS +15	V: 14.826	SPARE TMP3:	-49,485			GIN13 10 31, 1209

SCREEN - ACS MAIN PAGE

ACS Information:

- Mode Command Status: Commanded or Auto
- Current ACS Mode:
- Idle Mode Transition Indicator (0 ~ 5)
- ACS Primary Control Sun Sensor in Use
- Actual and Commanded Torque Rod Currents (Amp)
- Magnetic Field (Gauss)

• FSS, CSS, SAS

- Sun Vector
- Pointing Error Calculation (deg)
- Sun Presence Indicator
- Transverse Rate Estimations (rad/sec)
- Spin Rate Estimation (rpm)

Others:

- Telemetry Command Status
- Sun Pointing Error Fault Monitor (0, 1):
 - Disabled by Default
 - Must be Enabled from Ground
 - When Set to 1:
 - •Torqrods Powered Down
 - No Commands Sent to ACS
- IAD Selection
- IAD Rotation Direction

<u> </u>		a	csmain			
INFO		ACSMAIN				CLOSE
# ACS TCs SPACE	ECRAFT IS I	N: SHADOW	SUN	POINTING E	RROR? NO	νE
RECEIVED: 4	ACS MOD	E: [5] IDL	.E	SUN SE	NSOR: EO	J FSS
REJECTED: 0 CMNI	DED ACS MOD	E: [5] <mark>CO</mark> M	MANDED	IAD SELE	CTED: IA	D_1
ERRORS: 0 IDLE	E MODE TRAN	S: EOJ NOT	RANSITION	IAI	ROT: CL	DCKWISE
	X-AXIS	Y-AXIS	Z-AXIS	Z-REDN		
ACTUAL TOROR CURR:	-0,00024	-0,00049	-0,00049	-0,00049		PLOT
CMNDED TOROR CURR:	0,000000	0,000000	0,000000		SUN	PLOT
MAGNETIC FIELD:	0,160380	0.005119	-0,29158	ERROR	PRES	PLOT
FSS SUN VECTOR:	-0,25950	0,451281	0,853816	0,000000	NO_SUN	PLOT
CSS SUN VECTOR:	0,000000	0,000000	1,000000	0,000000	NO_SUN	PLOT
SAS SUN VECTOR:	0,000000	0,000000	1,000000	0,0000000	SUN	PLOT
TRANSVERSE RATE:	0,000000	0,000000	SPIN	RATE: 1,29	1703	PLOT
FSS	SAS	RAS	MAG	CTRL	PACI	
-						

SCREEN - FSS DETAILS PAGE

SPECTRUMASTRO

Displays Detailed Fine Sun Sensor I	nformation:								
Mode Command Status: Commanded or Auto									
• Mode Command Status. Commande									
• ACS Primary Control Sun Sensor In C									
• FSS Sun Presence: 1=SUN, 0=NO_S	SUN								
FSS Sun Vector									
 FSS Pointing Error Calculation (deg) 									
 For X and Y Axes: 	▼ fssdetail								
 sine/cosine Signal (Volts) 	ESSIFTATI TIM								
Coarse Bits	CMT +2000-363-18+55+23 CLK+2000-363-18+55+22 PKT9	495157 ATS+0							
 Pointing Error Estimation (deg) 		1,5515/ HISTO							
• ESS Electronics Outputs	ACS MODE: FRI THE SELECTED SENS: FAI ESS								
Power Status	CMNDED ACS MODE: F51 COMM ESS SUN PRES: NO SUN								
ESE Tomporaturo	CHINDED HES HODE, ESS COMMINSS SON TRES, MOLSON								
• State of Health (SOH)	ESS V-0VIS+ -0 35850 🔍 -555 0001+ -0 001+ 🔍	ESS DIC1. 0 067 🗖							
	FSS A-HAIS; -0,23950 FSS CUSI; -0,0010 F								
• 3.5 V Nominal	FSS 1-HAIS: 0.491281 FSS SINI: -0.0080 F								
	FSS 2-HXIS: 0.853816 F FSS CUS2: -0.0010 F	F55 DIG2: 0,000 P							
	FSS EST ERRUR: 0.0000000 P FSS SIN2: -0.0110 P	U							
	CUMPARE ESS TU CSS, AND SAS	FSS ELEC PWR STATUS: UN							
		FSS HTR POWR STATUS: ON							
	X-DELTAS: NEED_MNEM NEED_MNEM ON	FSS ELEC TEMP -2,885 📔							
	Y-DELTAS: NEED_MNEM NEED_MNEM OFF	FSS ELEC SOH: 3,532							
	Z-DELTAS: NEED_MNEM NEED_MNEM								
	PLOT PLOT	CLOSE							

SCREEN - CSS DETAILS PAGE

SPECTRUMASTRO

Displays Detailed Coarse Sun Sensor Information: Current ACS Mode Mode Command Status: Commanded or Auto • ACS Primary Control Sun Sensor in Use CSS Sun Presence CSS Sun Vector CSS Pointing Error Calculation 8 CSS Channel Current Outputs: cssdetail • (0 ~1300µA) CSSDETAIL VCID:0 TLM UPDATING GMT:2000-363-18:59:33 CLK:2000-363-18:59:31 PKTS:99150 ATS:0 **Solar Array Release Status:** X-axis Lower Pri/Sec Release ACS MODE: [5] IDLE SELECTED SENS: [0] FSS SPCCRFT IS IN: SHADOW X-axis Upper Pri/Sec Release CMNDED ACS MODE: E53 COMM CSS SUN PRES: NO_SUN ARRAY RELEASE STATUS Y-axis Lower Pri/Sec Release CSS X-AXIS: 0.000000 P ARRAY CURR:-0.009 X LOWER (PRI/SEC): 1 1 Y-axis Upper Pri/Sec Release CSS Y-AXIS: 0.000000 P X UPPER (PRI/SEC): 1 CSS Z-AXIS: 1.000000 P Y LOWER (PRI/SEC): 1 CSS EST ERROR: 0.000000 📔 Y UPPER (PRI/SEC): 1 COMPARE CSS TO FSS, AND SAS CSS CHANNEL DATA FSS CHAN 1: 2.946 CHAN 5: 2.946 X-DELTAS: NEED_MNEM NEED_MNEM ON CHAN 2: 2.946 CHAN 6: 2.946 Y-DELTAS: NEED_MNEM NEED_MNEM OFF CHAN 3: 2.946 CHAN 7: 2.946 Z-DELTAS: NEED_MNEM NEED_MNEM CHAN 4: 2.946 CHAN 8: 2.946 PLOT PLOT PLOT PLOT CLOSE

SCREEN - MAG DETAILS PAGE

Â,

To be Added

SAFE MODE

Idle Mode is Considered a Safe Mode for HESSI:

• All Torque Rods Are Disabled

1

• Sun Pointing Error shall Accumulate Approximately 1 deg/Day During Idle Mode

A Flag Indicates the Possible Causes for Autonomous Transition to Idle Mode:

- to_idle_flag = 0 No Transition to Idle Mode
 - Not used
 - 2 Precession to Idle : β <5 deg AND NOT 14.5< Ω <15.5rpm
 - 3 Normal to Idle: $\beta > 0.5 \text{ deg}$
 - 4 Normal to Idle: NOT 13.5<Ω<16.5rpm
 - 5 Spin to Idle: 14.5< Ω <15.5rpm AND NOT β <0.2 deg

Autonomous Transitions 3 and 4 Indicate Possible Anomalies During Normal Mode:

- Pointing Error is out of Acceptable Range, or
- Spin Rate Falls Out of the Operating Range

ANOMALY 1 - STOWED SOLAR ARRAYS

Â,

SPECTRUMASTRO

Imager (H

+X Solar Array Not Deployed:

- Shown for 10 Orbits of Simulation for Initial Acquisition Phase with a Nominal LV Tip-off Conditions
- Other 3 Solar Arrays will be Able to Generate Sufficient Power Maximum DOD=23%

Contingence:

• Deploy Stowed Solar Array from Ground

ANOMALY 2 - CSS Cell FAILURE

One or Two CSS Cells Fail During Initial Acquisition Phase:

- Assume No Current Output from Failed Cells
- Assume Nominal Tip-Off Rates (4, 4, 17) deg/sec
- Assume Tip-Off Orientation: 90 deg from the Sun
- SC Should be able to Acquire the Sun for up to Two Cell Failure Cases
- May Need to Modify ACS FSW to Discontinue the Use of Bad CSS Channels

ANOMALY 3 - FSS FAILURE

FSS Fails During Initial Acquisition Phase:

- CSS should be able to Save the Spacecraft by Pointing Z-axis toward the Sun
- CSS is Designed for Pointing SC to Sun Coarsely, therefore, Precession Performance using CSS is Not as Good as Using FSS
- SC will Stay in Precession Mode without Ground Interference

Contingence:

• Switch CSS in Place of FSS (in Future Version of ACS FSW)

FSS Fails During Normal Mission Operation:

• CSS can't Meet Mission Pointing Requirement of 0.2 deg Because of its Low Accuracy (1~2 deg)

Contingence:

• Using CSS + SAS for Possible Limited Mission Capability (May be in Future Version of ACS FSW)

ANOMALY 4 - MAG FAILURE

MAG Failure

• No Magnetic Field Measurement from MAG

Contingence:

• None

UNDER VOLTAGE

High Energy Solar Spectroscopic Imager (HESSI)

Under-voltage trip levels

- •UV1 Level is 26.85V Nominal and 24.86V Degraded Mode
- •UV2 Level is 26.33V Nominal and 24.15V Degraded Mode
- •UV3 Level is 25.70V Nominal and 23.54V Degraded Mode

Under-voltage trip action

- •UV1 Causes IDPU Safe Mode Signal to Be Sent
- •UV2 Turns off Torque Rods, FSS, Magnetometer and CPU
- •UV3 Turns off All Switches. Transmitter and Receiver Will Still Work. Ground Command to Turn On CPU