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Abstract

One way of imaging X-ray emission from solar flares is to measure Fourier components of the spatial X-ray source

distribution. We present a new Compressed Sensing-based algorithm named VIS CS, which reconstructs the spatial

distribution from such Fourier components. We demonstrate the application of the algorithm on synthetic and observed
solar flare X-ray data from the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI ) satellite and

compare its performance with existing algorithms. VIS CS produces competitive results with accurate photometry

and morphology, without requiring any algorithm- and X-ray source-specific parameter tuning. Its robustness and

performance make this algorithm ideally suited for generation of quicklook images or large image cubes without user

intervention, such as for imaging spectroscopy analysis.
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1. INTRODUCTION

Solar flares are the most energetic phenomena in the solar system, releasing energy of up to 1025 J in seconds to

minutes converting it to accelerated particles and plasma heating and generating emission across the electromagnetic

spectrum in the process. X-rays and gamma-rays are the most direct signature of flare-accelerated particles and provide

valuable insights which are central for the understanding of the underlying physical processes (see Fletcher et al. (2011)
for a review). Due to their high energy, X-ray photons cannot be focused easily with traditional optics. A widely

used method in solar physics to image high energy X-rays is indirect Fourier imaging. The X-ray flux is modulated

temporally and/or spatially to measure the complex Fourier components of the source distribution. The resulting data

products (so-called visibilities) are mathematically equivalent to the data products obtained by radio interferometers

(Hurford et al. 2002).
The most recent X-ray imager employing this method is the NASA spacecraft Reuven Ramaty High Energy Solar

Spectroscopic Imager (RHESSI, Lin et al. (2002)). This instrument consists of a telescope holding nine Germanium

detectors, each behind a bi-grid, a so-called “subcollimator”, with different pitch. As the spacecraft spins around

its own axis, the subcollimators modulate the X-ray flux temporally, which is measured by the Germanium detector
behind each subcollimator. Several algorithms have been developed in the past to reconstruct an image from these

measurements. The individual strengths and weaknesses of existing algorithms are discussed in section 2. All of these

algorithms typically require algorithm- and source-specific parameter tuning and detector selection to produce best

results, something that requires in-depth knowledge of the instrument and image algorithms.

One particular challenge of Fourier imaging is that the number of measured visibilities is necessarily limited by photon
statistics and fabrication limits of the subcollimators. Images are reconstructed typically from 50 to 300 visibilities

(Figure 1). The Nyquist-Shannon sampling theorem states that an arbitrary signal with bandwidth b must be sampled

at > 2b points to allow the reconstruction of the original signal (Landau 1967). For the problem at hand this means

that at least 2b visibilities are required to reconstruct an image with 2b pixels perfectly. As RHESSI records far fewer
visibilities than what would be required for even the smallest of reconstructions (e.g. 64× 64 = 4096 pixels from less

than 300 visibilities), perfect reconstructions are fundamentally impossible. High-resolution image reconstruction from

only a few measured visibilities is an under-determined, ill-posed problem. There are infinitely many reconstructions

that fit the measured visibilities, thus any specific reconstruction is inherently biased in some way. All sparse image

reconstruction algorithms face this problem.
Here we present a new algorithm (VIS CS) that is based on the fact that X-ray source distributions are not arbi-

trary signals, but sparse when represented in an appropriate basis. Most natural signals are sparse in some bases.

Candes & Romberg (2005) and Donoho (2006) showed first that sparse signals can be reconstructed from far fewer

samples than the Nyquist-Shannon sampling theorem suggests. This so-called “Compressed Sensing” is possible when
the signal, the measurement device and a suitable reconstruction algorithm all satisfy several constraints, as described

in the previously mentioned papers. Despite the fact that RHESSI violates these constraints, Compressed Sensing

reconstruction algorithms can be applied in this setting. Given that the RHESSI instrument cannot be changed, we

solely concentrate on the reconstruction algorithm.

In this paper we show the application of Compressed Sensing to the image reconstruction problem from RHESSI

visibilities. We compare and contrast our approach with other image reconstruction algorithms and show that less

parameter tuning is required to obtain plausible reconstructions, making the algorithm particularly useful for automatic

generation of quick-look images and large image-cubes for imaging spectroscopy. In Section 2 we give a brief overview

of existing imaging algorithms for RHESSI observations. The VIS CS algorithm is described in Section 3. Tests of
the algorithm using synthetic data, as well as solar flare data observed with RHESSI, are presented in Section 4.

2. EXISTING IMAGE RECONSTRUCTION METHODS

Several reconstruction methods for X-ray images were first developed for visibilities recorded by radio interferometry

(Thompson et al. 2001). Before the RHESSI mission, such reconstruction methods were applied to the hard X-

ray Telescope HXT of the Japanese Yohkoh spacecraft Kosugi et al. (1991). Those reconstruction methods have been
adopted by the RHESSI mission and have since been constantly improved upon. Some algorithms have been developed

specifically for RHESSI. Here we give a brief overview of the most commonly used algorithms.

Back projection—The back projection algorithm (Hurford et al. 2002) performs an inverse Fourier transform where all

non-measured Fourier components are assumed to be zero. The resulting reconstructions show heavy ringing artefacts
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Figure 1. Illustration of image reconstruction from complex Fourier components as measured by the RHESSI satellite. Left:
Locations of Fourier components (visibilities) of a simple two-dimensional Gaussian source in the uv-plane, calculated from the
time modulated X-ray flux. Each circle corresponds to one of 9 RHESSI subcollimators. Grey dots indicate visibilities with a
weak signal. Right: Reconstructed image using the VIS CS algorithm. The black isolines mark 10%, 30%, 50%, 70%, and 90%
of peak emission.

and contain areas with unphysical negative flux. Note that the standard RHESSI implementation of this simple

algorithm is based on time-modulated photon counts instead of visibilities.

Clean—This algorithm iteratively subtracts point sources, convolved with the point spread function of the instrument,

from the backprojected image. This process is repeated until the residuals are below a predefined threshold (Högbom
1974; Hurford et al. 2002). Clean rarely produces spurious or over-resolved sources. However, to resolve small sources

users have to carefully select the subcollimators that are used for the reconstruction (and thus the spatial resolution)

and Clean beam width. It is currently the standard algorithm for reconstructions of large numbers of images and

generation of quicklook images.

uv smooth—The uv smooth algorithm reconstructs missing Fourier components by interpolating the visibilities in

the uv-plane (Massone et al. 2009). It then iteratively backprojects visibilities and thresholds the image to impose a
positivity constraint. uv smooth is the fastest algorithm currently in use, but produces ringing artifacts in some cases,

as is apparent in the aforementioned publication by the authors of uv smooth.

Pixon—Metcalf et al. (1996) assume that images are superpositions of circular sources (pixons). Pixon employs a

specialized heuristic to balance the degrees of freedom (the number of pixons) while maintaining consistency with

the data. The Pixon algorithm generally provides excellent photometry, but can be computationally demanding and

suffers from over-resolution artifacts when not tuned, as reported by Krucker et al. (2011). Pixon shares some ideas
with our algorithm as it exploits sparsity for its reconstructions as well. But Pixon uses simpler basis functions, a

different approach to solve the optimization problem and it operates on time-modulated photon counts instead of

visibilities.

Forward Fit—This algorithm performs, as its name indicates, a parametric fit of a model to the measured data

(Aschwanden et al. 2002). A priori, users choose a model to be fitted to the source distribution. The algorithm

supports models with up to three two-dimensional, circular or elliptic, Gaussians. If the chosen model matches reality
reasonably well, Forward fit produces good results. Two versions exist: The original implementation operates on

photon counts, a more recent implementation operates on visibilities (VIS FWDFIT). This newer implementation is

widely used to determine the centers of mass of sources as it is capable of measuring these with sub-arcsecond accuracy

and provides uncertainties.
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λ = 0.1 λ = 0.3 λ = 0.5 λ = 0.7 λ = 0.9

(default)

Figure 2. Reconstructions of a flare source observed with RHESSI using different regularization strengths to control the
sparseness of the reconstruction. Left (λ = 0.1): Reconstructions with less regularization tend to over-resolve structures. Right
(λ = 0.9): Stronger regularization produces blob-like shapes with no apparent detail. In this paper λ = 0.5 is used for all
reconstructions.

3. IMAGE RECONSTRUCTION WITH COMPRESSED SENSING

Our algorithm VIS CS generates plausible reconstructions, consistent with the measurements, by superimposing
Gaussian distributions. Let x ∈ Rn be the spatial source distribution in image space we wish to reconstruct. Without

loss of generality, we assume that the source distribution can be represented discretely as vector with n elements (i.e.

pixels). y ∈ Cm represents the m measured visibilities and η ∈ Cm is a noise vector. The matrix A ∈ Cm×n represents

the linear transformation that is performed physically by RHESSI ’s modulating subcollimators and detectors that
transform the spatial flux distribution into visibilities. RHESSI observes x as noisy visibilities y = Ax+ η. Given A

and y, an image reconstruction method tries to find a reconstruction x̂ that is close to x:

minimize
x̂

‖Ax̂− y‖ (1)

Compressed Sensing (Candes & Romberg 2005) shows that signals x can be reconstructed from relatively few mea-

surements (m ≪ n), if the signal is sufficiently sparse when represented in an appropriate basis. Suitable sparse bases
may be overcomplete, i.e. the basis may contain many more basis functions than strictly necessary. Also, the basis

functions need not be orthogonal. We use matrix D ∈ Rm×n to describe the linear transformation from a suitable

sparse basis to spatial image space. If the Compressed Sensing assumption holds and x is sparse in the chosen basis,

we may add Dx̂ as ℓ0 regularizer to bias the solution towards sparse reconstructions:

minimize
x̂

(1− λ) ‖Ax̂− y‖
2

2
+ λ‖Dx̂‖0 (2)

The ℓ0 norm in the regularization term makes this an intractable combinatorial optimization problem. For this

reason, we use the ℓ1 norm as a substitute, which makes this a convex optimization problem. The rationale and the

impact of this common substitution are discussed in Candes et al. (2008).
The sparseness parameter λ is the only free parameter of the algorithm. It controls the regularization strength, to

bias the solution towards more or less sparse reconstructions, as shown in Figure 2. Formulations of this kind are

known as LASSO in statistics and machine learning (Tibshirani 1996). We use λ = 0.5 for all reconstructions in this

paper. Because the observed X-ray flux is intrinsically positive, we impose positivity constraints on the image x̂. As

all basis functions are non-negative, it suffices to add a non-negativity constraint for each basis coefficient. With these
constraints the final formulation of our algorithm VIS CS looks like this:

minimize
x̂

(1− λ) ‖Ax̂− y‖
2

2
+ λ‖Dx̂‖1

subject to ∀x̂i > 0,
(3)

Thus VIS CS is a convex, linearly constrained quadratic optimization problem. Convex optimization problems are
easier to solve than most other optimization problems: By construction, the only local optimum is also the global opti-

mum (Ponstein 1967). There are many methods to solve convex, linearly constrained quadratic optimization problems

(Boyd et al. 2011; Wolfe 1959; Nesterov & Nemirovskii 1994; Kozlov et al. 1980). We use Coordinate Descent with

the Active Set heuristic to solve the optimization problem (Friedman et al. 2010). Coordinate Descent reconstructs



Compressed Sensing-based Image Reconstruction 5

Table 1. Average wall-clock
time to reconstruct a single
131 × 131 pixel image

Algorithm Seconds

uv smooth 8.8

Back projection 9.9

VIS CS 10.0

Clean 12.8

Pixon 3665.6

Note—Reported are the av-
erage reconstruction dura-
tion for an image cube with
15 time- and 19 energy-bins
of the 19 July 2012 (04:34:00
- 05:26:04 UT) event with an
Intel Xeon E5-2650 2.3GHz
CPU. Due to time con-
straints, we timed Pixon
only for a single time- and
energy-bin.

Spatial (Pixel) basis Total Variation basis Gaussian basis Ground truth

Figure 3. Reconstructions of synthetic HESPE test data (Massone 2013a) using different bases compared with the ground
truth (right image). Commonly used bases, such as Total Variation, yield poor results with this data. Our custom Gaussian
basis (third image) yields a reconstruction that is closest to the ground truth.

images in reasonably short times, as the wall-clock comparison in Table 1 shows. The VIS CS reconstruction time
is largely independent of the number of reconstructed pixels, as the optimization problem is stated in the visibility

domain and the sparse basis. On the other hand, complex sources typically require more time to reconstruct than

simpler, sparse sources.

3.1. Gaussian distributions as sparse basis for X-ray source distributions

The success of Compressed Sensing hinges on the choice of the sparse basis D. Candes & Tao (2006) describe the
successful use of a total-variation basis and a spatial (Pixel) basis to process natural images. Starck et al. (2010)

experimented with Wavelets, Starlets, and Curvelets as sparse bases. In our experiments, we found that a custom

Gaussian basis results in better reconstructions from RHESSI data. Reconstructions with some common bases are

shown in Figure 3.
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Figure 4. Visualization of a few typical Gaussian distributions that constitute the basis functions of the Gaussian basis. The
method assumes that X-ray source distributions can be represented by a sparse linear combination of such basis functions.

We use a custom Gaussian basis on the assumption that sources can be represented as linear combinations of a
number of Gaussian distributions. This Gaussian basis is an overcomplete basis consisting of two-dimensional Gaussian

distributions of various sizes, orientations, and locations in the xy-plane. Figure 4 shows examples of Gaussian basis

functions, which make up the chosen Gaussian basis. We randomly sample up to 106 basis functions from the infinite

set of Gaussian distributions. The number of basis functions represents a trade-off between the reconstruction quality
and speed. For practical reasons, we reduce the problem size by using fewer basis functions when reconstructing from

more visibilities and vice versa. We find empirically that the reconstruction quality does not improve noticeably when

using more than 106 basis functions.

We use Gaussian distributions with a size of 1.5” 6 σx,y 6 40”, corresponding to typical observed solar flare source

sizes. The eccentricity is limited by imposing σx 6 2.5σy 6 2.52σx. Strongly eccentric X-ray sources (e.g. flare ribbons
or loops) can still be reconstructed by superposing multiple smaller Gaussians. While we developed this set of basis

functions specifically for X-ray flare reconstructions from RHESSI measurements, the algorithm itself is not tied in

any way to this specific sparse basis.

4. APPLICATION ON SYNTHETIC AND REAL DATA

4.1. Tests with synthetic data

The quality of an image reconstruction algorithm must be assessed in several dimensions. A good reconstruction

algorithm produces accurate photometry, source locations, sizes, and morphologies. Ideally, those properties hold

in cases with single and multiple sources of varying dynamic range, with high and low detector counts. In the
following sections we systematically create and analyze synthetic scenarios to test VIS CS along those dimensions

using specialized simulation software (part of the RHESSI data analysis package in Solar Soft), which allows for three

different detector count statistics, i.e. number of simulated counts per detector to emulate flaring sources of different

intensities. We use 136 visibilities from RHESSI detectors 3 to 9. All algorithms are used with their default parameters
1. These defaults were empirically optimized by the respective algorithm experts to yield reasonable results for typical
flare sources, but often the results can be improved by changing parameters on a case by case basis. However, this

requires in-depth knowledge of the individual algorithms. Many casual RHESSI data users are not familiar with

the intricacies of all the different algorithms and for certain applications like imaging spectroscopy it is impractical

to fine-tune the parameters for individual images. Hence for our tests we generally use default parameters, unless
otherwise specified.

4.1.1. Dynamic range and photometry

To test the dynamic range of the algorithms we recreate a test proposed by Massone et al. (2009), where two circular

Gaussian sources with a FWHM of 10” and varying peak ratios are simulated. The sources are separated by 22”. We
use simulations with 100’000 cts det−1 emulating hight counting statistics. The results in Figure 5 show that VIS CS

faithfully reproduces simple source morphologies and peak ratios. The top row displays VIS CS reconstructions, the

1 The default parameters of all RHESSI imaging algorithms are documented at https://hesperia.gsfc.nasa.gov/ssw/hessi/doc/params/hsi_params_image.htm

https://hesperia.gsfc.nasa.gov/ssw/hessi/doc/params/hsi_params_image.htm
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Figure 5. Top row: VIS CS reconstructions of two circular Gaussian sources (FWHM = 10”), separated by 22”, with different
peak flux ratios. The simulations use peak flux ratios of 1:1, 1:5, 1:10 and 1:50 per column. Bottom row: Intensity profiles
along the white cross-cut axis. The reconstructed peak ratios are shown in parentheses after each algorithm.

bottom row shows one-dimensional cross cuts of reconstructions from several algorithms. In all four cases the VIS CS

reconstructions have total fluxes between 98% and 99.5% of the true input fluxes. Therefore, VIS CS marginally
underestimates the total flux of sources in this test. VIS CS reconstructs 100.6% (1:1), 91.1% (1:5), 93.8% (1:10) and

61.5% (1:50) of the true peak ratios. With the noise statistics simulated in these tests VIS CS reliably identifies weak

sources in cases with a dynamic range of 1:50. The ability of VIS CS to reproduce consistent source shapes is also

noteworthy.

We test the absolute accuracy of source photon fluxes and source sizes reconstructed with VIS CS with a similar
setup. We simulate a single circular Gaussian source in various sizes and plot horizontal cross-cuts through the center

of the source. The horizontal axis was chosen arbitrarily, other axes yield similar results. This time, we use simulations

with 10’000 cts det−1 to see the impact of a reduced signal to noise ratio. Figure 6 shows that VIS CS reconstructs total

fluxes, peak fluxes, and source sizes with good accuracy. The only algorithm to produce better results is Forward Fit,
which we configured to reconstruct a single circular Gaussian source. It is not surprising that small sources (FWHM

6 5”) present a challenge to all reconstruction algorithms since the finest subcollimator used for this reconstruction

has a pitch of 6.79”. Sources of medium size (FWHM = 15”) are handled better by all algorithms. Very large sources

with a FWHM > 30” pose more of a challenge, as these sources start to fragment in reconstructions. In this test with

default parameters, Clean and VIS CS are the most resilient reconstruction algorithms. VIS CS reconstructs 105.2%,
104.4%, 102.6% of the true total flux and 67.9%, 97.7%, 97.4% of the true peak amplitudes. It reconstructs sources

of accurate sizes and without side-lobes. It is apparent that Pixon and Clean require tuning per test for accurate

results. Without tuning, Clean cannot reconstruct small sources and by design over-estimates source sizes. uv smooth

overestimates the source fluxes (171.2%, 125.2%, 107.0%) and tends to break up large sources. Without tuning Pixon
shows over-resolution artifacts in all tests.

4.1.2. Spatial source localization

We analyze the ability of VIS CS to localize peak source locations. For this test we create 1 500 instances with a

single circular source and constant total flux at random locations. Figure 7 shows the distances of the reconstructed

peak flux to the true center of the source. As expected, the model fitting algorithm vis fwdfit localizes sources with

the highest accuracy of all tested algorithms. VIS CS reconstructs peak locations with similar accuracy up to FWHM
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Figure 6. Tests with a single circular Gaussian source with FWHM ∈ {5”, 15”, 30”}. The image on the left is a VIS CS
reconstruction of the FWHM = 15” case, where the horizontal white line marks the cross-cut axis. The remaining images show
intensity profiles along this horizontal cross-cut axis.
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Figure 7. Analysis of distances between reconstructed peak flux locations and actual peak flux locations of 1’500 simulated
circular sources. Whiskers mark extremal distances, 25% and 75% distance percentiles are shown as boxes, the centerline
represents median distances. Left to right, top to bottom: VIS CS, Clean, uv smooth, vis fwdfit.

≥ 15”. As we simulate sources with a constant total flux, larger simulated sources exhibit flatter peaks. Therefore,

reconstruction errors affect the location of the maximum of larger sources more heavily.

4.1.3. Performance for complex morphologies and low count rates

The above tests were performed using simple, circular Gaussian sources. To evaluate the performance of VIS CS

qualitatively, with realistic, more complex morphologies, we use synthetic source configurations that were created as
part of the EU FP7 HESPE project (Csillaghy et al. 2012). These configurations were inspired by real events as

observed by RHESSI. We tested VIS CS with three configurations that represent more complex source morphologies;

four compact sources, one compact source in the presence of an extend source, and a loop-shaped source. We compare

VIS CS with Clean and the simulated input map (ground truth), using detectors 3 to 8 and the default parameter
settings for Clean. For VIS CS, all detectors are used. Figure 8 shows the resulting maps for the three different detector

count statistics and in comparison with the ground truth. According to Massone (2013b) most existing algorithms

benefit from parameter tuning, i.e. selection of detectors to be used and algorithm-specific parameter optimization

such as number of iterations in the case of Clean. Here we deliberately neglected such optimization, other than detector

selection, for both algorithms, and find that VIS CS reproduces the source morphology with the highest accuracy and
no over-resolution artefacts, even in the case of low count rates.

4.2. Application on observed X-ray flare data

Solar flares are highly individual, with strongly varying morphology, depending on the photon energy and the time

at which they are observed. One can broadly classify sources into three main groups:

1. Extended sources observed at low photon energies, usually seen in the solar corona, that originate from hot

plasma;
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Figure 8. Comparison of VIS CS and Clean reconstructions of synthetic simulations of different source shapes and count
statistics. Left to right: Three different simulated detector count statistics (1’000 cts det−1, 10’000 cts det−1, 100’000 cts det−1)
and the artificial input map (i.e. ground truth). Top to bottom: Three different source morphologies (several small, compact
sources, an elongated larger source, flare loop) inspired by real events from 23 July 2002 (00:29:10 - 00:30:19 UT, 36 - 41 keV), 2
December 2003 (22:54:00 - 22:58:00 UT, 18 - 20 keV), and 23 August 2005 (14:27:00 - 14:31:00 UT, 14 - 16 keV). Reconstructions
of this dataset with other algorithms are shown in Massone (2013a).
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Figure 9. Comparison of image reconstructions of two types of actual flare sources from three different algorithms. Left to
right: Clean, Pixon, VIS CS. Top row: extended source above the solar limb. Bottom row: one bright and one faint compact
source. The contours give the 20%, 50% and 70% level relative to the maximum emission in each image. VIS CS reconstructs
the extended source without fragmentation and is capable of recovering compact sources even without source-specific detector
selection.

2. Compact sources observed at higher photon energies originating from the chromosphere;

3. Loop-shaped sources originating from hot plasma that fills out magnetic loops connecting the corona with the

chromosphere.

Each of these sources provides different challenges for imaging algorithms. For example, subcollimators that correspond

to a resolution finer than the source dimension will not lead to modulated flux and thus contribute only noise to the
image reconstruction. The challenge for the user is thus to select the appropriate subcollimators, algorithm, and

algorithm-specific parameters for a given source. We applied VIS CS on flares observed with RHESSI that show

these three typical morphologies and compare its performance with the reconstructions from the Clean and Pixon

algorithms.

4.2.1. Extended and compact sources

For our comparison, we chose an event that occurred on 19 July 2012 with a high energy X-ray peak-time around

05:22 UT. The event is described in detail by e.g. Battaglia & Kontar (2013) and Krucker & Battaglia (2014). During

the peak intensity of the emission, it displayed an extended source above the solar surface and two compact sources
close to the solar surface. We used two standard image reconstruction algorithms (Clean and Pixon). For these,

detectors 3-8 were used, but without detector 4 as it was excessively noisy at the time. For all other parameters, the

defaults were used. The VIS CS image was made using all detectors, except detector 4. The images were made for a

one minute integration time from 05:21 UT to 05:22 UT. Results are shown in Figure 9.
The extended source (imaged over energy range 6-12 keV) is well reproduced by Clean and VIS CS, with the

advantage that VIS CS does not have any side-lobes. The Pixon image is unphysically fragmented. Both effects

could be reduced or probably even eliminated by fine-tuning algorithm parameters, which requires algorithm-specific

expertise.
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Figure 10. Comparison of image reconstructions of a flaring loop from three different algorithms. Left to right: Clean, Pixon,
VIS CS. The contours give the 20%, 50% and 70% level relative to the maximum emission in each image. VIS CS recovers the
loop-shape better than Clean without fragmenting the source.

The compact sources (imaged over energy range 25-50 kev) are well reproduced by all three algorithms. Here, Clean
results in larger source sizes, again something that could be improved by fine-tuning parameters. Pixon reconstructs

very compact sources but shows artifacts around them. All reconstructions show a weak residual emission in the

corona. This emission, however, is at the noise level.

4.2.2. Loops

Although loops are very common in ultraviolet images of solar flares, RHESSI images often only show the loop-top,
most likely because imaging based on rotating modulating collimators is most sensitive to the brightest source in

the field of view, making it difficult to observe co-temporal fainter sources. Some observations of X-ray loops were

reported by Jeffrey & Kontar (2013) who studied spatial and spectral properties of three X-ray loops by reconstructing

the examined loops with various imaging algorithms. Here we use one of the events analyzed by Jeffrey & Kontar

(2013). The event occurred on 23 August 2005 and we integrate over a two minute interval between 14:28:00 UT and
14:30:00 UT and over the energy range 10-12 keV. Obtaining good reconstructions is difficult because of the low count

rate. We perform the same reconstruction with VIS CS, using all detectors and compare the results with Clean and

Pixon reconstructions on the same data (Figure 10). For Clean and Pixon, detectors 3-8 were used with no additional

imaging parameter optimization. The shape of the loop reconstructed with VIS CS is more clearly and concisely visible
than the one reconstructed with Clean.

4.2.3. Above-the-looptop source

Flares typically show one coronal source observed at low energies (up to ∼ 20 keV), although signatures of accelerated

electrons are expected at higher energies. Since these signatures tend to be rather faint compared to the bright low-

energy coronal emission, they are difficult to observe with current instrumentation, as indicated above. The first
observation of such an above-the-looptop source was made by Masuda et al. (1994).

Before the event of 19 July 2012 described above, there was prolonged activity (up to 40 minutes before the actual

flare) during which two separate sources could be identified in the corona (Liu et al. 2013; Sun et al. 2014). This

presents an interesting science case allowing to study electron energization near the reconnection region, but requires

a reliable imaging algorithm that is able to reconstruct the faint above-the-looptop source and separate it from the
coronal source. We present the image reconstruction for a 3-minute time interval from 04:46:00 and 04:49:00, again

comparing Clean with VIS CS (Figure 11), using detectors 3 and 5-8 over the energy range 16-20 keV for Clean and

Pixon. For VIS CS, again all detectors were used except detector 4. While it would be possible to more clearly separate

the two sources by fine-tuning the Clean parameters, the source separation in the default VIS CS reconstruction is
more pronounced. VIS CS also gives slightly elongated sources.

5. CONCLUSIONS

Image reconstruction of X-ray solar flare emission observed with instruments like RHESSI requires specialized al-

gorithms, each of which has advantages and disadvantages, depending on source morphology and application. We



12

Figure 11. Comparison of image reconstructions of two coronal sources from three different algorithms. Left to right: Clean,
Pixon, VIS CS. The contours give the 20%, 50% and 70% level relative to the maximum emission in each image. VIS CS is
capable of reconstructing, and separating the faint above-the-looptop.

systematically tested and demonstrated the ability of our new Compressed Sensing-based algorithm VIS CS to accu-

rately reconstruct source locations, photometry, and morphology in a wide range of scenarios. The algorithm performs
well in synthetic tests, as well as with observed flare data. The key advantage of VIS CS over the state-of-the-art

is the ability to produce high-quality image reconstructions without algorithm- or source-specific parameter tuning

and in a short time. Its robustness and speed mean that VIS CS is well-suited for applications where quick and

reliable image generation for a variety of source morphologies with a minimum of user interaction is needed, such as
for generation of quicklook images and large image cubes for imaging spectroscopy. While developed for analysis of

RHESSI data, the algorithm is not restricted to RHESSI visibilities. Early tests indicate that VIS CS is a competitive

image reconstruction algorithm for the upcoming STIX instrument (Krucker et al. 2013), which uses a similar imaging

principle but with a different uv-coverage. We encourage the use of of VIS CS whenever fast, reliable reconstruction

of a large number of images is needed and for less experienced users of RHESSI data. We made the IDL function
vis cs available as part of the SolarSoft SSW (Freeland & Handy 1998) package.

We would like to thank André Csillaghy, Richard A. Schwartz, László I. Etesi, Säm Krucker, Gabriele Torre and

Lucia Kleint for their help, insightful discussions, and suggestions. We highly appreciate the constructive feedback

from the referee.

REFERENCES

Aschwanden, M. J., Schmahl, E., & RHESSI Team. 2002,

SoPh, 210, 193

Battaglia, M. & Kontar, E. P. 2013, ApJ, 779, 107

Boyd, S., Parikh, N., Chu, E., Peleato, B., & Eckstein, J.

2011, Foundations and Trends in Machine Learning, 3, 1

Candes, E. & Romberg, J. 2005, in Proc. SPIE, Vol. 5914,

Wavelets XI, ed. M. Papadakis, A. F. Laine, & M. A.

Unser, 239–244

Candes, E. J. & Tao, T. 2006, IEEE transactions on

information theory, 52, 5406

Candes, E. J., Wakin, M. B., & Boyd, S. P. 2008, Journal

of Fourier analysis and applications, 14, 877

Csillaghy, A., Etesi, L. I., & Hochmuth, N. 2012, in

Astronomical Society of the Pacific Conference Series,

Vol. 461, Astronomical Data Analysis Software and

Systems XXI, ed. P. Ballester, D. Egret, & N. P. F.

Lorente, 467

Donoho, D. L. 2006, IEEE Transactions on information

theory, 52, 1289

Fletcher, L., Dennis, B. R., Hudson, H. S., Krucker, S.,

Phillips, K., Veronig, A., Battaglia, M., Bone, L., Caspi,

A., Chen, Q., Gallagher, P., Grigis, P. T., Ji, H., Liu, W.,

Milligan, R. O., & Temmer, M. 2011, SSRv, 159, 19

Freeland, S. L. & Handy, B. N. 1998, SoPh, 182, 497

Friedman, J., Hastie, T., & Tibshirani, R. 2010, Journal of

statistical software, 33, 1
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