# HESSI Mission Integration & Test Plan

HSI\_MIT\_001C September 1999

| Written By: | Jay Trimble, UCB HESSI I & T Engineer   | Date: |
|-------------|-----------------------------------------|-------|
| Approval:   | Peter Harvey, UCB HESSI Project Manager | Date: |
| Approval:   | Dave Curtis, UCB HESSI System Engineer  | Date: |

### CONTENTS

| PURPOSE & SCOPE                              | 6    |
|----------------------------------------------|------|
| APPLICABLE DOCUMENTS                         | 6    |
| LEVEL 3 REQUIREMENTS                         | 7    |
| TEST FLOW CHART, DEPENDENCIES & SCHEDULES    | 8    |
| I & T SUPPORT TEAMS                          | 9    |
| SSL TEAM                                     | 9    |
| Spectrum Astro Team                          | 9    |
| PSI TEAM                                     | 9    |
| GSFC TEAM                                    | 9    |
| TEST STAFFING                                | 10   |
| PSI Support                                  | 10   |
| IEST TRACKING/REPORTING/ANOMALIES            | 11   |
| DAILY MEETINGS                               | 11   |
| TRACKING AND LOGGING NOMINAL TEST OPERATIONS | . 11 |
| SUBSYSTEM ENGINEER LOGS                      | . 11 |
| IIOS Logs                                    | 11   |
| Tracking System/Subsystem Operating Time     | 11   |
| CONFIGURATION CONTROL                        | 11   |
| DEALING WITH ANOMALIES                       | 11   |
| PFR's                                        | 12   |
| Test Review Board                            | 12   |
| FACILITIES                                   | . 13 |
| INTEGRATION AND TEST FACILITIES AT LICB      | 13   |
| High Bay                                     | 13   |
| Spacecraft Integration Facility              | 13   |
| SIF Clean Area                               | 13   |
| Handling of Radioactive Sources at UCB       | 16   |
| Storage Area                                 | 16   |
| Environmental Testing: JPL Facilities        | . 17 |
| Environmental Testing                        | 17   |
| LAUNCH VEHICLE INTEGRATION: VAFB FACILITIES  | 18   |
| Launch Vehicle Integration: KSC Facilities   | 18   |
| GROUND SUPPORT EQUIPMENT                     | 19   |
| MGSE                                         | . 19 |
| EGSE                                         | 21   |
| UCB EGSE List                                | 21   |
| Spacecraft Bus EGSE                          | 22   |
| TEST VERIFICATION PRIOR TO DELIVERY TO UCB   | 26   |
| Spacecraft Bus                               | 26   |
| Imager                                       | . 26 |
| Spectrometer                                 | 26   |
| IDPU                                         | 26   |

| TESTS                                                                                                                         | 28               |
|-------------------------------------------------------------------------------------------------------------------------------|------------------|
| Test Matrix                                                                                                                   |                  |
| TEST SPECIFICATIONS                                                                                                           | 32               |
| Spacecraft Alignment and Measurement Specification                                                                            | 32               |
| Imager-RAS Alignment Test Specification                                                                                       | 34               |
| 1. STARTING CONDITIONS:                                                                                                       | 34               |
| 1.1 IMAGER ESS AND RAS ARE MECHANICALLY INTEGRATED WITH SPACECRAFT                                                            | 34               |
| 1.1. IMAGER, FISS AND READ READ AND CONNECTED TO ITS GSE.                                                                     | 34               |
| 1.3. ALL TOOLING-BALLS (TBS) ARE MOUNTED                                                                                      | 34               |
| 2. TESTING STEPS:                                                                                                             | 34               |
| 2.1 , becode ambient tempedature imaged/PAS has to be at four idding tempedature                                              | 34               |
| 2.1. RECORD AMBIENT TEMPERATURE, IMAGEN RAS HAS TO BE AT EQUILIBRIUM TEMPERATURE<br>2.2. VERIEV THAT TRS ARE PROPERTY MOUNTED | 34               |
| 2.3. MEASURE AT LEAST 5 TBS ON IMAGER FRONT TRAY AND COMPARE TO AUTONOMOUS TEST RES                                           | ULTS.            |
| DEFINE IMAGER COORDINATE SYSTEM.                                                                                              | 34               |
| 2.4. MEASURE AT LEAST 3 TBS ON IMAGER REAR TRAY AND DETERMINE POSITIONS IN IMAGER                                             |                  |
| COORDINATE SYSTEM. COMPARE TO AUTONOMOUS TEST RESULTS AND WITH TMS RESULTS                                                    | 34               |
| 2.5. MEASURE ALL 4 TBS ON RAS. COMPARE TO AUTONOMOUS TEST RESULTS                                                             | 34               |
| 2.6. MEASURE FIDUCIAL MARKS ON FSS. COMPARE TO NOMINAL.                                                                       | 34               |
| IDPU Functional Test Specification                                                                                            | 36               |
| 9. TEST OBJECTIVES:                                                                                                           | 38               |
| 10. SUCCESS CRITERIA:                                                                                                         | 39               |
| 1 IDDU INCLUDINCE                                                                                                             | 39               |
| 1. IDFU, INCLUDING                                                                                                            | 39               |
| 1.1. IDI O VNIL CHASSIS (INCLUDING LAKTICLE DERTECTOR)                                                                        | 39               |
| 1.3. CRYO POWER CONVERTER (CPC).                                                                                              | 39               |
| 12. Software Requirements:                                                                                                    | 40               |
| 13. FACILITY REQUIREMENTS:                                                                                                    | 40               |
| 14. System Dependencies:                                                                                                      | 40               |
| IDPU – Spectrometer Interface Test Specification                                                                              | 41               |
| Spectrometer Electrical Functional Test Spec                                                                                  | 44               |
| Spectrometer Mechanical Thermal Functional                                                                                    | 47               |
| RAS Functional Test Specification                                                                                             | 49               |
| 3. STARTING CONDITIONS:                                                                                                       | 49               |
| 3.1. RAS AND IDPU ARE MECHANICALLY INTEGRATED WITH SPACECRAFT, RAS BAFFLE IS COVERE                                           | ,D               |
| WITH LED COVER, LED IS CONNECTED TO LED DRIVER                                                                                | 49               |
| 3.2. IDPU IS ELECTRICALLY MATED TO S/C AND HAS COMPLETED ITS INTERFACE TEST                                                   | 49               |
| 3.3. IDPU IS CONNECTED TO ITS GSE                                                                                             | 49               |
| 4. TESTING STEPS:                                                                                                             | 49               |
| 4.1. VERIFY IDPU TO RAS HARNESS BY LOADING SIMULATORS                                                                         | 49               |
| 4.1.1. power up s/c and IDPU Instrument power services                                                                        | 49               |
| 4.1.2. verify that IDPU is responsive                                                                                         | 49               |
| 4.1.3. verify no voltage on RAS harness in IDPU SAFE mode (power-up default)                                                  | 49               |
| 4.1.4. command IDPU to provide power to KAS sequentially and verify voltage levels on harr                                    | iesses           |
| ana waa simuutors                                                                                                             | 49<br>10         |
| 4.2 POWER OFF IDPLI MATE IDPLI TO RAS                                                                                         | 49<br><u>1</u> 9 |
| 4.3. POWER ON IDPU                                                                                                            | 49               |
| 4.4. VERIFY RAS TEMPERATURE SENSORS READ APPROPRIATE LEVELS                                                                   | 49               |
| 4.5. SET TEMPERATURE STABILIZATION SYSTEM TO SOME NON-AMBIENT VALUE AND VERIFY THAT S                                         | YSTEM            |
| WORKS                                                                                                                         | 49               |

| 4.6. ACTUATE RAS SHUTTER. VERIFY OPTICALLY BY REMOVING BAFFLE COVER. RESET THE SHUTTER           |    |
|--------------------------------------------------------------------------------------------------|----|
| PINPULLER AND VERIFY OPTICALLY. REMOUNT BAFFLE COVER.                                            | 49 |
| 4.7. POWER-ON RAS AND VERIFY PERFORMANCE PARAMETERS:                                             | 49 |
| SAF + Imager Temperature Functional Test Specification                                           | 51 |
| 5. STARTING CONDITIONS:                                                                          | 52 |
| 5.1. IMAGER AND IDPU ARE MECHANICALLY INTEGRATED WITH SPACECRAFT, SAS DUST COVERS REMAIN MOUNTED | 52 |
| 5.2. IDPU IS ELECTRICALLY MATED TO S/C AND HAS COMPLETED ITS INTERFACE TEST                      | 52 |
| 5.3. IDPU IS CONNECTED TO ITS GSE                                                                | 52 |
| 6. TESTING STEPS:                                                                                | 52 |
| 6.1. VERIFY IDPU TO SAS HARNESS BY LOADING SIMULATORS                                            | 52 |
| 6.1.1. power up s/c and IDPU Instrument power services                                           | 52 |
| 6.1.2. verify that IDPU is responsive                                                            | 52 |
| 6.1.3. verify no voltage on SAS harness in IDPU SAFE mode (power-up default)                     | 52 |
| 6.1.4. verify no voltage on heater/sensor harness in IDPU SAFE mode (power-up default)           | 52 |
| 6.1.5. command IDPU to provide power to SAS sequentially and verify voltage levels on harnesse   | 25 |
| and load simulators                                                                              | 52 |
| 6.1.6. command IDPU to provide power to heater/sensor system sequentially and verify voltage     |    |
| levels on harnesses and load simulators                                                          | 52 |
| 6.2. POWER OFF IDPU, MATE IDPU TO SAS AND HEATER/SENSORS                                         | 52 |
| 6.3. POWER ON IDPU                                                                               | 52 |
| 6.4. VERIFY TEMPERATURE SENSORS READ APPROPRIATE LEVELS                                          | 52 |
| 6.5. SET TEMPERATURE STABILIZATION SYSTEM TO SOME NON-AMBIENT TEMPERATURE AND VERIFY TH          | AT |
| TEMPERATURE FOLLOWS                                                                              | 52 |
| 6.6. POWER-ON SAS AND VERIFY PERFORMANCE PARAMETERS:                                             | 52 |
| Integrated Spacecraft Calibration Test Spec                                                      | 54 |
| TMS TEST SPECIFICATION                                                                           | 56 |
| GDS L&EO Simulation Test Spect                                                                   | 58 |
| GDS Normal Ops Simulation Test Spec                                                              | 59 |
| GDS Anomaly Simulation Test Specification                                                        | 60 |
| TEST SUPPORT PLAN                                                                                | 62 |
| TEST SUPPORT AT SPECTRUM ASTRO                                                                   | 62 |
| TEST SUPPORT AT BERKELEY                                                                         | 62 |
| TEST SUPPORT AT ENVIRONMENTAL TESTING                                                            | 62 |
| TEST SUPPORT AT VAFB                                                                             | 62 |
| Shipment of GSE from VAFB to KSC on the OSC OCA                                                  | 62 |
| TEST SUPPORT AT KSC                                                                              | 62 |
| PROCEDURES                                                                                       | 63 |

### Purpose & Scope

This purpose of this document is to facilitate a working process within the HESSI team for the development of mission integration and test plans, and to document schedules, procedures, constraints, requirements and equipment specifications necessary for a successful integration and test phase for HESSI. Mission I & T refers to integration and test activities which take place following the delivery of each subsystem to UCB with all planned subsystem-level tests completed.

### **Applicable Documents**

| General Environmental Verification Specification for | GEVS-SE-REV A                          |
|------------------------------------------------------|----------------------------------------|
| STS & ELV Payloads, Subsystem and Components         |                                        |
| HESSI Performance Assurance Implementation Plan      | NAS5-98033                             |
| HESSI Mission Requirements                           | HSI-SYS-021B                           |
| HESSI Spacecraft Bus Integration and Test Plan       | Spectrum Astro Contract No. PPB005884  |
| (Spectrum Astro)                                     |                                        |
| Spacecraft Bus – Spectrometer ICD                    | HSI-SYS-015E                           |
| HESSI Spectrometer ICD Drawing                       | HSI_SYS_014D                           |
| Spacecraft Bus – Imager ICD                          | HSI-SYS-016C                           |
| HESSI-PE82-022b - Imaging System & GSE - Product     | HSI_IMG_001A                           |
| Specification and & HESSI Interfaces                 |                                        |
| Spacecraft – RAS ICD                                 | HSI-SYS-017D                           |
| HESSI RAS ICD Drawing                                | HSI_SYS_018A                           |
| Spacecraft Bus – IDPU ICD                            | HSI-SYS-001D                           |
| HESSI Imager ICD Drawing                             | HSI_SYS_009A                           |
| HESSI Harness Diagram                                | HSI_SYS_005H                           |
| HESSI Spacecraft to I&T IGSE (SCAT) ICD              | HSI_GDS_002A                           |
| ITOS to I&T IGSE (SCAT) ICD                          | HSI_GDS_003A                           |
| HESSI to Pegasus XL ICD                              | Orbital Sciences Drawing Number A70370 |

### **Level 3 Requirements**

- 1.0 Mission I & T shall verify system functionality of the following subsystems (assumes successful testing at the subsystem level)
  - 1.1 Spacecraft Bus
  - 1.2 Spectrometer
  - 1.3 Imager & RAS
  - 1.4 IDPU
- 2.0 Mission I & T shall verify the following electrical and functional interfaces
  - 2.1 Imager to IDPU
  - 2.2 Spectrometer to IDPU
  - $2.3 \hspace{0.1in} \text{IDPU to S/C Bus}$
  - 2.4 Spacecraft Bus to GDS
- 3.0 Mission I & T shall verify the following alignments using ring/marmon clamp as reference
  - 3.1 RAS/SAS (measurement)
  - 3.2 FSS/SAS (measurement)
  - 3.3 Imager/Spectrometer
  - 3.4 Imager/Spacecraft

4.0 Mission I & T shall verify the spacecrafts ability to function in the space environment, launch environment, and survive ground transport.

5.0 Mission I & T shall verify the spacecrafts ability to properly execute its on-orbit operations plan.

## **Test Flow Chart, Dependencies & Schedules**

If you're viewing this document on-line, you can view the Mission I & T Schedule at:

ftp://apollo.ssl.berkeley.edu/pub/hessi/schedules/hsi\_mint.mpp

You must have Microsoft Project 98 or later.

## I & T Support Teams

### SSL Team

| Position                      | Name              | Phone        | e-mail                    |
|-------------------------------|-------------------|--------------|---------------------------|
| Spacecraft System Engineer    | Dave Curtis       | 510 642-5998 | dwc@ssl.berkeley.edu      |
| Integration and Test Engineer | Jay Trimble       | 510 642-0149 | jtrimble@ssl.berkeley.edu |
| Lead Test Conductor           | Tim Quinn         | 510 643-8379 | teq@ssl.berkeley.edu      |
| Test Conductor                | Joe Rauch-Lieba   | 510 642-6119 | Rauch@ssl.berkeley.edu    |
| Test Conductor                | Sandy Wittenbrock | 510 642-6119 | Sandy@ssl.berkeley.edu    |
| Test Conductor                | TBS               |              |                           |
| Lead Calibration              | Dave Smith        | 510 643-1585 | dsmith@ssl.berkeley.edu   |
| Calibration                   | Bob Campbell      | 510 642-4186 | Rdc@ssl.berkeley.edu      |
| Lead Mechanical Engineer      | David Pankow      | 510 642-1034 | dpankow@ssl.berkeley.edu  |
| Mechanical Engineer           | Bob Pratt         | 510 643-9652 | pratt@ssl.berkeley.edu    |

### Spectrum Astro Team

| Position                       | Name          | Phone        | e-mail                     |
|--------------------------------|---------------|--------------|----------------------------|
| Spacecraft Bus System Engineer | John Jordan   | 602 892-8200 | john.jordan@specastro.com  |
| Spacecraft Bus Integration and | John Dipalma  | 602 892-8200 | John.dipalma@specastro.co  |
| Test Engineer                  |               |              | m                          |
| Spacecraft Bus GSE Engineer    | Jeff Jackson  | 602 892-8200 | Jeff.jackson@specastro.com |
| Spacecraft Bus Electrical      | Mike Matranga | 602 892-8200 | Mike.matranga@specastro.c  |
| Engineer                       | _             |              | om                         |

### PSI Team

| Position        | Name                 | Phone           | e-mail                  |
|-----------------|----------------------|-----------------|-------------------------|
| Imager Engineer | Alex Zehnder         | 41 56 310 36 15 | alex.zehnder@psi.ch     |
| System Engineer | Reinhold Henneck     | 41 56 310 3404  | Reinhold.henneck@psi.ch |
| Electronic Eng. | Aliko Mtchedlishvili | 41 56 310 32 47 | Aliko@psi.ch            |
| Mechanical Eng. | Knud Thomsen         | 41 56 310 42 10 | Knud.thomsen@psi.ch     |
| Mechanical Eng. | Peter Ming           | 41 56 310 41 28 | Peter.ming@psi.ch       |

### GSFC Team

| Position  | Name           | Phone          | e-mail                        |
|-----------|----------------|----------------|-------------------------------|
| Grid Rep  | Gordon Hurford | (301) 286-4255 | ghurford@pop600.gsfc.nasa.gov |
| Alignment | Dave Clark     | 301 286-0710   | david.clark@gsfc.nasa.gov     |

### Test Staffing

Single Shift Staff – TBS

Overtime Shift Staff – TBS

# PSI Support

| Activity                                       | PSI Support              |
|------------------------------------------------|--------------------------|
| Transport Imager to SIF                        | Peter Ming               |
| RAS/SAS/IDPU Functional Test (Pre-Integration) | Aliko, Reinhold Henneck  |
| Install Rear Cap, Rear Cylinder, MLI Blankets  | Peter Ming, Knud Thomson |
| Imager/Spectrometer Alignment                  | Alex Zehnder, Reinhold   |
| Install RAS                                    | Reinhold                 |
| RAS/SAS Measurements (CMM)                     | Alex, Reinhold           |
| FSS/SAS Measurements                           | Alex                     |
| TMS                                            | Alex                     |
| Instrument Functionals                         | Aliko                    |
| RAS/Imager Coalignment Verification (CMM)      | Reinhold, Alex           |

### **Test Tracking/Reporting/Anomalies**

### Daily Meetings

During the HESSI Mission I & T phase, there shall be an I & T planning meeting at 8:00 a.m. daily. The meeting shall review spacecraft and test status, activities from the prior day and planned activities for the current days testing.

### Tracking and Logging Nominal Test Operations

At the start of each test, the Test Conductor shall document the test setup and initial conditions. The Test Conductor shall keep a written log that documents test events, with a time notation for each entry. The Test Conductors written log shall supplement the ITOS logs (see below).

### Subsystem Engineer Logs

Subsystem engineers shall keep logs to document running time, results of subsystem performance analysis.

ITOS Logs TBS

### Tracking System/Subsystem Operating Time

ITOS shall be used to track subsystem operating time.

### **Configuration Control**

A configuration control system shall be in place to document and track the configuration of the spacecraft and work performed during Integration and Test. Configuration control shall include visual documentation of the spacecraft configuration using digital pictures.

### Spacecraft Configuration Controlled Elements

TBS

### Dealing with Anomalies

A test anomaly is any non-nominal or unexpected data or result that occurs during testing. All anomalies shall be noted in the test conductors log, and this notation shall include the time of the event, the symptoms, and a description of the test setup and any test/spacecraft configuration information that would be needed to diagnose the anomaly. Anomalies shall be classified by the following classifications according to their implications for HESSI mission performance:

- 1. Mission Critical Failure can impact ability to successfully fulfill primary mission science requirements.
- 2. Secondary Science Impact Failure can impact the ability to successfully fulfill secondary mission science requirements.

- 3. Mission Operations Impact Failure can impact mission operations, does not endanger ability to collect science data over the lifetime of the mission but may require operational changes.
- 4. Secondary Impact Failure does not impact primary mission or operations. May impact extended mission.
- 5. No significant impact.

### PFR's

For all anomalies of class 4 or higher, the test conductor shall fill out an anomaly report using the Spacecraft Emergency Response System (SERS). If the anomaly cannot be classified in real-time, then a PFR shall be filled out for review by appropriate engineering/science teams.

### Test Review Board

A Test Review Board (TRB) shall review all failure reports of class 3 or higher. The TRB shall be convened on an as-needed basis. This board shall consist of the Project Manager, System Engineer, Principal Investigator, Quality Assurance Manager, Spectrum Rep and PSI Rep, or their delegate(s). The TRB shall call in support from subsystem engineers and/or science team members on an as-needed basis. At the end of each test shift, the test conductor will complete a test report log (TRL). The TRL shall be a summary of key events that occurred during the test, and will include mention of all anomalies. The Project Manager and System Engineer shall review the TRL on a weekly basis in order to understand any programmatic implications of test results.

PFR's shall be tracked in a Database that will be available on the Web. The TRL shall also be available on the Web.

### Facilities

### Integration and Test Facilities at UCB

### High Bay

The high bay will be used for inserting the Imager and the Spectrometer into the spacecraft bus.

### Spacecraft Integration Facility

The spacecraft integration facility (SIF) is rooms 125 and 127 in the new building at SSL. The room 125 area of the SIF consists of a clean area for spacecraft processing, a gowning area, as well as support areas for GSE (see figure on the following page). The room 127 area of the SIF will house GSE support racks and Integrated Test and Operations Systems (ITOS) workstations. Following insertion of the Imager and the Spectrometer into the spacecraft bus, the spacecraft will reside in the SIF for the duration of I & T at Berkeley.

### SIF Clean Area

The SIF clean requirement is class 100,000, which is driven by the RAS and SAS optics (the optics will normally be covered), and the Imager tube and Grids.

# HESSI Spacecraft Integration Facility (SIF)



# HESSI (SIF) Beam Heights





# Handling of Radioactive Sources at UCB TBS

### Storage Area

Located adjacent to the SIF in SSL room TBD, this area will be used for storing shipping containers and other equipment.

### Environmental Testing: JPL Facilities

### **Environmental Testing**

Jet Propulsion Laboratory facilities shall be used for all environmental tests, including vibration, shock, thermal vacuum, spin balance, CG and MOI, EMI/EMC, and thermal balance.

For more information on the HESSI environmental test program see the HESSI Environmental Test Plan.

### Launch Vehicle Integration: VAFB Facilities

VAFB and KSC Facilities Testing at VAFB consists of three phases:

- Functional verifications, solar array installation and testing at NASA's facilities in building 836.
- Abbreviated functional and Pegasus mating in building 1555.
- Hotpad Testing

Facilities specifications for NASA facilities at VAFB are available in the NASA Facilities Reference Book for VAFB.

VAFB facilities drawings for buildings 836 and 1555 TBS.

### Launch Vehicle Integration: KSC Facilities

Following the ferry flight from VAFB to KSC, an abbreviated functional shall be performed on the HESSI spacecraft, followed by a final pump down of the cryostat.

KSC Facilities drawings TBS.

# **Ground Support Equipment**

### MGSE

| Name                                   | Purpose                     | Responsibility  |
|----------------------------------------|-----------------------------|-----------------|
| Imager Lifting Fixture                 | Lift the Imager/Spacecraft  | PSI             |
| Rotation Fixture Adapter               | Structural frame interface  | Spectrum Astro  |
|                                        | from spacecraft to          |                 |
|                                        | spacecraft rotation fixture |                 |
| Rotation Fixture                       | Holding fixture with        | Spectrum Astro  |
|                                        | bearings to rotate from     |                 |
|                                        | vertical to horizontal      |                 |
| Spacecraft Integration                 | Includes shock isolation    | Spectrum Astro  |
| Dolly                                  | casters.                    |                 |
| Spacecraft Thermal                     | Holds the spacecraft in the | Spectrum Astro  |
| Vacuum Fixture                         | JPL 10 foot horizontal      |                 |
|                                        | thermal vacuum chamber      |                 |
| Spacecraft Lifting Sling               | Interface for lifting the   | Spectrum Astro  |
|                                        | spacecraft in the rotation  |                 |
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | fixture                     |                 |
| Spacecraft Adapter Ring                | Serve as interface to GSE,  | Spectrum Astro  |
| (Red Ring)                             | protect flight interface    |                 |
| Spin Table Adapter                     | Interface from GSE red ring | Spectrum Astro  |
|                                        | to mass properties          |                 |
|                                        | instrument                  | <b>G</b>        |
| Spacecraft vibration                   | GSE red ring allows         | Spectrum Astro  |
| fixture                                | mounting to JPL fixture     |                 |
| Constant & Dallar                      | through 24 load washers     | Constant Andrea |
| Spacecraft Dolly                       | Dolly for integration and   | Spectrum Astro  |
|                                        | transportation of the       |                 |
| S/C Stond for anyostat                 | Spacecraft.                 | LICD Turin      |
| S/C Stand for Cryostat                 | insertion of the crusotet   | UCD – Turin     |
| Instantation                           | from below                  |                 |
| Cryostat position stand                | Spectrometer installation   | LICB Turin      |
| Cryostat position stand                | into spacecraft             |                 |
| Load Cell                              | Load Cell for Imager mass   | LICB - Pankow   |
| Loud Cell                              | properties hydraulic        | CCD Talkow      |
|                                        | positioner                  |                 |
| Byrd Mobile                            | Position spacecraft for     | UCB borrow from |
| Byra Woone                             | mating with the Pegasus     | GSFC            |
| Spectrum EGSE                          |                             | Spectrum Astro  |
| shipping containers                    |                             | - <b>I</b>      |
| Spectrum MGSE                          |                             | Spectrum Astro  |
| shipping containers                    |                             | 1               |
| UCB EGSE shipping                      |                             |                 |
| containers                             |                             |                 |
| UCB MGSE shipping                      |                             |                 |
| containers                             |                             |                 |
| PSI EGSE shipping                      |                             |                 |

| containers          |                             |                 |
|---------------------|-----------------------------|-----------------|
| PSI MGSE shipping   |                             |                 |
| containers          |                             |                 |
| TBD Imager shipping |                             |                 |
| container(s)        |                             |                 |
| Hot Pad Clean Tent  | Fairing to protect the      | Borrow from     |
|                     | spacecraft from weather     | GSFC, requested |
|                     | conditions at the hot pad – | through LSSP    |
|                     | use at VAFB, KSC. Buy       |                 |
|                     | two, have one at KSC, one   |                 |
|                     | at VAFB. Should not need    |                 |
|                     | to fly on the L-1011.       |                 |

### EGSE

Label each piece of GSE with reference codes?

### UCB EGSE List

| Name                 | Size            | U      | J      | V     | AFB   |    | K      | Power        | Comments               |
|----------------------|-----------------|--------|--------|-------|-------|----|--------|--------------|------------------------|
|                      |                 | C<br>B | P<br>T | 836 1 | 555 1 | HP | S<br>C | Requirements |                        |
| Spectrometer EGSE    |                 | D      |        |       |       |    | C      |              |                        |
| LN2 Cart             |                 | х      | х      |       |       |    |        |              |                        |
|                      |                 | х      | х      |       |       |    |        |              |                        |
| LN2 Control Rack     |                 | х      | х      |       |       |    |        |              |                        |
|                      |                 |        |        |       |       |    |        |              |                        |
| Cryostat Vacuum      | 19"W x          | х      | х      | X     | X 2   | x  | х      |              |                        |
| Pump/ion gauge GSE   | 28"L x          |        |        |       |       |    |        |              |                        |
|                      | 40"H            |        |        |       |       |    |        |              |                        |
| Cryostat Vacuum Pump | 18"W x          |        |        |       | 2     | x  | х      |              |                        |
| Chiller              | 30"L x          |        |        |       |       |    |        |              |                        |
|                      | 42"H            |        |        |       |       |    |        |              |                        |
| Faraday Cage for     | 24" W X         |        |        |       | 2     | X  | х      |              | Required for close     |
| cryostat pump and    | 38 L X          |        |        |       |       |    |        |              | proximity to the       |
| ciinei               | 43 П            |        |        |       |       |    |        |              |                        |
| Spectrometer         |                 |        |        |       |       |    |        |              |                        |
| Calibration          |                 |        |        |       |       |    |        |              |                        |
| X-Y Cal System       |                 | x      | x      |       |       |    |        |              |                        |
|                      |                 |        |        |       |       |    |        |              |                        |
| X-Y Cal Electronics  |                 | х      | х      |       |       |    |        |              |                        |
|                      |                 |        |        |       |       |    |        |              |                        |
| Image Generator      |                 | х      |        |       |       |    |        |              |                        |
|                      |                 |        |        |       |       |    |        |              |                        |
| IDPU                 | Uses S/C        |        |        |       |       |    |        |              |                        |
|                      | Bus GSE         |        |        |       |       |    |        |              |                        |
|                      |                 |        |        |       |       |    |        |              |                        |
|                      |                 |        |        |       |       |    |        |              |                        |
| PSI Imager           |                 |        |        |       |       |    |        |              |                        |
| TMS Stand            | TMS             | х      | х      | Х     |       |    |        |              |                        |
|                      | needs a         |        |        |       |       |    |        |              |                        |
|                      | space           |        |        |       |       |    |        |              |                        |
|                      | that is         |        |        |       |       |    |        |              |                        |
|                      | 146"X           |        |        |       |       |    |        |              |                        |
| TMS Control Computer | 33 X 8/         |        |        |       |       |    |        |              |                        |
| TMS Control Computer | IBM<br>ThinkPad | х      | х      | Х     |       |    |        |              |                        |
|                      | 770             |        |        |       |       |    |        |              |                        |
| TMS LED Driver Box   | 12" x 8"        | x      | x      | x     |       |    |        |              | Box with cable to      |
| THE LED DITTO DOA    | x 6"            |        | ^      | Λ     |       |    |        |              | imager and a serial    |
|                      |                 |        |        |       |       |    |        |              | link to computer.      |
|                      |                 |        |        |       |       |    |        |              | Box goes near the      |
|                      |                 |        |        |       |       |    |        |              | spacecraft. Assume 1   |
|                      |                 |        |        |       |       |    |        |              | ft. long x 1 ft. wide. |

|                                   |                            |   |   |   |  | Box<br>switches laser diodes<br>on and off. Box has<br>coax cable going to<br>the computer. |
|-----------------------------------|----------------------------|---|---|---|--|---------------------------------------------------------------------------------------------|
| 220V Transformer                  | TBS                        | X | х | Х |  |                                                                                             |
| X – Y Camera Control<br>Box       | 19.7" x<br>15.8" x<br>7.9" | X | х | X |  |                                                                                             |
| Coordinate<br>Measurement Machine |                            | x | x | Х |  |                                                                                             |

### Spacecraft Bus EGSE

The Spectrum EGSE is used in all phases of Mission I & T, including UCB, JPL, VAFB and KSC Testing.

| Name                | Size | U | J |     | VAFB |    | K | Power (W) | Comments |
|---------------------|------|---|---|-----|------|----|---|-----------|----------|
|                     |      | С | Р | 836 | 1555 | HP | S |           |          |
|                     |      | В | L |     |      |    | C |           |          |
| Bus EGSE            |      |   |   |     |      |    |   |           |          |
|                     |      |   |   |     |      |    |   |           |          |
| Power & Signal Rack |      | х | х | х   | Х    | Х  | х |           |          |
| S/C Power Supplies  |      |   |   |     |      |    |   | 2500      |          |
| Electronic Load     |      |   |   |     |      |    |   | 150       |          |
| VME                 |      |   |   |     |      |    |   | 250       |          |
| SIG GEN             |      |   |   |     |      |    |   | 200       |          |
| Rack 28V Power      |      |   |   |     |      |    |   | 100       |          |
| Solar Array Sim     |      |   |   |     |      |    |   | 250       |          |
| Total               |      |   |   |     |      |    |   | 3450      |          |
|                     |      |   |   |     |      |    |   |           |          |
| Command & Telemetry |      |   |   |     |      |    |   |           |          |
| Rack                |      |   |   |     |      |    |   |           |          |
| MONITOR             |      |   |   |     |      |    |   | 200       |          |
| CPU                 |      |   |   |     |      |    |   | 200       |          |
| DDR                 |      |   |   |     |      |    |   | 400       |          |
| UPS                 |      |   |   |     |      |    |   | 50        |          |
| Total               |      |   |   |     |      |    |   | 850       |          |
|                     |      |   |   |     |      |    |   |           |          |
| COMPUTERS           |      |   |   |     |      |    |   |           |          |
| ITOS & P&S PC       |      |   |   |     |      |    |   | 800       |          |
|                     |      |   |   |     |      |    |   |           |          |
| Battery Cooler      |      | Х | х | х   | Х    | Х  | Х | 1300      |          |
|                     |      |   |   |     |      |    |   |           |          |
|                     |      |   |   |     |      |    |   |           |          |

Spectrum Equipment racks are 22.5" wide x 38.5" deep x 77" tall.

### **Power Rack**



Front

Back

### SCAT Rack

|                  |                                | - |
|------------------|--------------------------------|---|
| MON              | ITOR                           |   |
| KEYB             | OARD                           |   |
| PCI TIME<br>CODE | ISA<br>SUBCARRIER<br>MODULATOR |   |
| SCA              | T PC                           |   |
| ISA BIT SYNC     | ISA SCAT<br>CARD               |   |
| Digital Data     | a Recorder                     |   |
| UF               |                                |   |



### **Test Verification Prior to Delivery to UCB**

### Spacecraft Bus

The following tests, to be performed by Spectrum Astro on the Spacecraft Bus prior to delivery to UCB, shall be verified to be completed before mission I & T begins:

- Modal Tap Tests
- □ EPS Test
- □ CDHS Test
- □ Instrument Interface Test
- □ Solar Array wing installation, IAD, first motion, full deploy, removal
- □ ACS Test
- Telecom test
- Bus Functional Test

#### Imager

The following tests, to be performed by PSI on the Imager prior to delivery to UCB, shall be verified to be completed before mission I & T begins:

- □ TMS Test
- □ Gridlet tests on each subcollimator using Nal detectors
- □ Relative co-alignment among SAS detectors and TMS using a heliostat
- Correlation of grid trays optical prism (TBD by SSL) to grid tray fiducials used by Leitz LT(D) 500 laser tracker
- □ ADP interface test using EGSE
- □ RAS/SAS functional tests
- Carl Assembled Grid Tray Vibration and Thermal Vacuum Testing...TBS
- □ Imager Vibration Testing (modal survey, random, and sine burst)
- □ Imager Thermal Vacuum or thermal testing...TBS
- □ ADP & RAS vibration and thermal vacuum sequence
- □ Subsystem operating time accrued

#### Spectrometer

- □ Vibration
- Thermal Vacuum
- □ Functional
- □ Calibration
- Mass Verification
- □ Subsystem operating time accrued

### IDPU

- □ Vibration
- Thermal Vacuum
- □ EMC (CE/CS)
- Functional
- Mass Properties

□ Subsystem operating time accrued

Tests

### Test Matrix

| HESSI Mission I & T Overview        |                              |          |          |          |           |             |
|-------------------------------------|------------------------------|----------|----------|----------|-----------|-------------|
| Test                                | Test Spec Ref. Code          | UCB      | JPL      | VAFB 836 | VAFB 1555 | VAFB Hot Pa |
|                                     |                              |          |          |          |           |             |
| Full Bus Functional                 | CPT_Bus                      | 1        | 2        | 1        |           |             |
| Abbreviated Bus Functional          | LPT_Bus                      | 1        | 2        | 1        | 1         | 1           |
| Imager/Spectrometer Alignment       | MECH_Img/Spec_Align          | 1        |          |          |           |             |
| RAS/SAS Measurement                 | MECH_Img_RAS/SASMeas         | 1        | 1        |          |           |             |
| FSS/SAS Measurement                 | MECH_SC/Img_FSS/SASMeas      | 1        | 1        |          |           |             |
| IDPU Functional Test                | CPT_IDPU                     | 1        |          |          |           |             |
| IDPU Bus Interface Test             | IIT_Bus/IDPU                 | 1        |          |          |           |             |
| IDPU/Imager I/F Test                | IIT_IDPU/Img                 | 1        |          |          |           |             |
| IDPU/Spectrometer I/F Test          | IIT_Spec/Img                 | 1        |          |          |           |             |
| End-to-End Image Generation         | SFT_SC_ImageGen              | 1        |          |          |           |             |
| Magnetic Self Compatibility         | CPT_SC_MagSelf               | 2        |          |          |           |             |
| Spectrometer Functional Electrical  | CPT_Spec_Elec                | 1        |          |          |           |             |
| Spectrometer Functional Mechanical  | CPT_Spec_MechTherm           | 1        |          |          |           |             |
| Inermal                             | CDT ImaBaa                   | 1        |          |          |           |             |
| Inagel/RAS Functional               |                              | 1        |          |          |           |             |
|                                     |                              | <u> </u> |          | 4        |           |             |
| 1MS<br>ODC Circulations             |                              | <u> </u> | Ζ        | 1        |           |             |
| GDS Simulations                     |                              | 1        |          |          |           |             |
| End-to-End (plugs out)              | CPT_SC/GDS_EndtoEnd          | 1        |          |          |           |             |
| Backup Ground Station Compatibility | SFT-SC/GDS_BUCompat          | 1        |          |          |           |             |
| Spectrometer Short Functional       |                              | 1        | 3        | 1        |           |             |
| Imager Short Functional             | LPT_Imager                   | 1        | 3        | 1        |           |             |
| Solar Array Illumination            | IIT_SolarArrays_Illumination |          | 1        | 1        |           |             |
| Solar Array First Motion            | IIT_SolarArrays_FirstMotion  |          | 3        | 1        |           |             |
| EMI/EMC                             | SFT_SC_EMI/EMC               |          | 1        |          |           |             |
| Vibration                           | SFT_SC_Vib                   |          | 1        |          |           |             |
| Separation (shock)                  | SFT_SC_Sep                   |          | 1        |          |           |             |
| Thermal Vacuum                      | SFT_SC_TV                    |          | 4 cycles |          |           |             |

| Thermal Balance | SFT_SC_ThermBal | 1 |  |  |
|-----------------|-----------------|---|--|--|
| CG              | SFT_SC_CG       | 1 |  |  |
| MOI             | SFT_SC_MOI      | 1 |  |  |
| Spin Balance    | SFT_SC_SpinBal  | 1 |  |  |

### **Test Specifications**

### Spacecraft Alignment and Measurement Specification

| 1. | Test Name:        | Spacecraft Alignment and Measurement                                                                                    |
|----|-------------------|-------------------------------------------------------------------------------------------------------------------------|
| 2. | Ref. Code:        | I&T-Img-AlignMeas                                                                                                       |
| 3. | Point of Contact: | Jay Trimble/David Pankow                                                                                                |
| 4. | System:           | Spacecraft                                                                                                              |
| 5. | Subsystem:        | Imager/Spectrometer                                                                                                     |
| 6. | Test Duration:    | 2 days (alignments), 2 days (measurements), 1 day for measurement verifications after spacecraft environmental testing. |

7. Contingency Time:

#### 8. Test Description:

<Dave Clark fill in CMM use, description>

#### 9. Test Objectives:

#### Alignments

Imager to Spectrometer Imager to Spacecraft

#### Measurements

Fine Sun Sensor to Instrument (SAS) RAS to SAS (Imager)

#### 10. Success Criteria:

Imager to Spectrometer Alignment concentric to the detectors to 1mm TIR, and within 1/10<sup>th</sup> deg (TBR) of the spacecraft z axis

FSS to SAS: Measuring the orientation to within 1 arcmin RAS to SAS: Measuring the orientation to within 1 arcmin

#### **11. Hardware Requirements:**

Portable CMM Tooling Balls TBD Base for CMM to be provided by Berkeley Portable PC Theodolite Optical cubes

**12. Software Requirements:** CMM Software

Autocad

#### **13. Facility Requirements:**

Clean room with TBD clearance around the spacecraft --SIF at UCB --TBD at environmental testing

TBD clearance for Theodolite measurements

#### 14. System Dependencies:

After integration and verification tests to be sure spacecraft and imager will not be separated again.

**15. Staffing Requirements:** Measurements

Dave Clark, and TBD assistance

#### Alignments

David Pankow, Mechanical Technician, Spectrum Astro Rep

#### 16. Notes/Comments

Spacecraft to be powered off during alignments and measurements.

How is the FSS measurement made? How are Theodolite coordinates related to CMM tooling ball coordinate measurements?

#### **Applicable Requirements**

BUS 6.7.1 Imager aligned concentric to spacecraft Z-axis to 1mm, aligned with Z-axis to  $\pm 1$  deg. BUS 6.7.2 Spectrometer concentric with Imager to 1mm, cryocooler free piston aligned with spacecraft Y-axis to  $\pm 1$  deg. BUS 6.7.3.1 RAS boresight direction 15 deg up from X-Y plane

BUS 6.7.3.2 RAS pointing stable to <1.0 arc-minute (INS-2.5.6)

INS 2.3 Alignment requirement: Telescope axis aligned to Sun direction to <0.2 degrees (INS-2.7.1) INS-2.5.5 SAS to Grid alignment, knowledge < 3 arcsecond, stability < 1 arcsecond BUS 2.3 Pointing Control: The spin axis shall be within 0.2 deg of the Sun center (INS-2.3)

#### **17. Failure Implications**

Re-align, re-measure, possible schedule and/or performance impacts.

### Imager-RAS Alignment Test Specification

- 1. Test Name:
- 2. Ref. Code:
- 3. Point of Contact:
- 4. System:
- 5. Subsystem:
- 6. Test Duration:
- 7. Contingency Time:

#### 8. Test Description:

#### 1. Starting conditions:

- 1.1. imager, FSS and RAS are mechanically integrated with spacecraft
- 1.2. CMM is ready for use and connected to its GSE

Imager

1d

1.3. all tooling-balls (TBs) are mounted

#### 2.Testing steps:

HSI\_MIT\_001C.doc, HESSI Mission Integration & Test Plan

2.1. record ambient temperature, imager/RAS has to be at equilibrium temperature

2.2. verify that TBs are properly mounted

2.3. measure at least 5 TBs on imager front tray and compare to autonomous test results. Define imager coordinate system.

2.4. measure at least 3 TBs on imager rear tray and determine positions in imager coordinate system. Compare to autonomous test results and with TMS results.

2.5. measure all 4 TBs on RAS. Compare to autonomous test results.

2.6. measure fiducial marks on FSS. Compare to nominal.

| 9. Test Objectives:        | <ul><li>a) test alignment of front tray to rear tray (twist, distance, parallelity)</li><li>b) measure RAS alignment with respect to imager (mainly in roll)</li><li>c) measure FSS alignment with respect to</li></ul>                                                          |
|----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 10. Success Criteria:      | <ul> <li>imager</li> <li>a) RAS alignment must be within ± 10' in roll and pitch with nominal values, measure actual orientation to within 1 arcmin</li> <li>b) FSS alignment must be within ± 10' with nominal values, measure actual orientation to within 1 arcmin</li> </ul> |
| 11. Hardware Requirements: |                                                                                                                                                                                                                                                                                  |
|                            | Full imager with SAS, RAS, FSS<br>CMM with GSE                                                                                                                                                                                                                                   |
| 12. Software Requirements: | software developed for CMM                                                                                                                                                                                                                                                       |
| 13. Facility Requirements: | free access all around s/c, space for GSE (2x2 $m^2$ )                                                                                                                                                                                                                           |
| 14. System Dependencies:   | CMM has been successfully tested on its own, results from preceding TMS test are available                                                                                                                                                                                       |

**Align Imager-RAS Reinhold Henneck, Alex Zehnder, Dave Clark** Instrument

- **15. Staffing Requirements:**
- 16. Notes/Comments:

17. Failure Implications:

A. Zehnder, R. Henneck accuracy of CMM:  $\pm$  30  $\mu$  for the determination of one TB center in 3D over full imager volume emergency. Delay for repair, may be significant if imager/RAS have to be dismounted

### **IDPU** Functional Test Specification

| 1. Test Name:        | HESSI IDPU Functional |
|----------------------|-----------------------|
| 2. Ref. Code:        | HSI-MI&T-IDPU-Func    |
| 3. Point of Contact: | Dave Curtis           |
| 4. System:           | Instrument            |
| 5. Subsystem:        | IDPU                  |
| 6. Test Duration:    | 4 hours               |
|                      |                       |

#### 7. Contingency Time:

### 8. Test Description:

Starting condition:

- 1. IDPU, IPC, and CPC are mechanically integrated with spacecraft
- 2. IDPU is electrically mated to the spacecraft, and has completed its interface test
- 3. IDPU is harnessed to the IPC and CPC via the Instrument harness
- 4. Spacecraft is connected to the spacecraft GSE, and is ready for operations
- 5. All instrument power services are off.

NOTE: This test does not assume that the Spectrometer, RAS, or Imager are installed (see Section 16, note 1).

Testing steps:

- 1. Install the High Voltage and Actuator enable plugs in the IPC.
- 2. Power on and configure the spacecraft bus, if it is not already powered
  - 2.1. Verify spacecraft operating nominally via state-of-health telemetry
- 3. Turn on SSR science telemetry; clear SSR contents.
- 4. Verify that the IDPU, IPC and CPC temperatures are in their start-up ranges.
- 5. Turn on the Instrument Power Bus
  - 5.1. Verify Nominal SAFE mode Instrument Bus current consumption (about 7W)
  - 5.2. Verify SAFE mode instrument housekeeping on the ITOS Display; temperatures, voltages, currents, instrument mode, error and reset counts, command verification, etc. (if part of the instrument is not preset on the spacecraft, the corresponding temperature sensors should be ignored).
  - 5.3. Verify no science telemetry transmitted via the SSR
- 6. Data Controller Board Test:
  - 6.1. Send a trial command to the IDPU
    - 6.1.1. Verify IDPU command receipt and processing
  - 6.2. Command a diagnostic memory dump of code (PROM Image)
    - 6.2.1. Verify Diagnostic packet received by ITOS
    - 6.2.2. Verify contents
    - 6.2.3. Verify packet time-tag appears nominal (check spacecraft clock interface)
  - 6.3. Command a processor diagnostic test (checks Processor RAM, Packet RAM, and I/O) 6.3.1. Verify correct response
  - 6.4. Send an IDPURESET command
    - 6.4.1. Verify IDPU processor reset counter increment
  - 6.5. Force the IDPU SAFE signal from the spacecraft active
    - 6.5.1. Verify IDPU goes to SAFE mode

- 6.6. Return IDPU SAFE signal to nominal
  - 6.6.1. Verify IDPU remains in SAFE mode
- 6.7. Command IDPU out of SAFE mode
- 6.7.1. Verify IDPU out of SAFE mode
- 6.8. Command Instrument backup spacecraft clock source
  - 6.8.1. Verify Monitor Rates packets continue to come periodically with correct packet collection times.
- 6.9. Command Nominal spacecraft clock source
- 7. Detector Interface / Science Telemetry Test:
  - 7.1. Enable Monitor Rates data collection
    - 7.1.1. Verify Monitor Rates packets collected (Only) via SSR
    - 7.1.2. Verify Monitor Rates all zero (No counts)
    - 7.1.3. Verify packet collection times are nominal at correct rate
    - 7.1.4. Verify no lost packets (packet counter increments sequentially)
  - 7.2. Enable FAST rates
    - 7.2.1. Verify Fast Rates packets collected via SSR
    - 7.2.2. Verify Fast Rates all zero (No counts)
    - 7.2.3. Verify packet collection times are nominal at correct rate
    - 7.2.4. Verify no lost packets (packet counter increments sequentially)
  - 7.3. Enable Events
    - 7.3.1. Verify no events packets collected via SSR
  - 7.4. Turn on AFEs
    - 7.4.1. Verify nominal AFE SOH telemetry (voltages/currents)
    - 7.4.2. Verify no counts in Monitor & Fast rates, No events
  - 7.5. Enable DIF event simulation
    - 7.5.1. Verify event packets collected via SSR
    - 7.5.2. Verify packet rate
    - 7.5.3. Verify packet header format
    - 7.5.4. Verify packet contents
    - 7.5.5. Verify Monitor rates ?
  - 7.6. Disable DIF event simulation
- [Tests of the AFE are part of the Spectrometer functional.]
  - 8. Particle Detector Test:
    - 8.1. Ramp up Particle Detector HV to nominal
      - 8.1.1. Verify a low count rate from cosmic rays (?)
    - 8.2. Bring a TBD radiation source close to the particle detector (this step can be skipped for short functionals)
      - 8.2.1. Verify an increase in the particle detector count rates
    - 8.3. Remove the radiation source
    - 8.4. Set Particle Detector threshold to zero
      - 8.4.1. Verify particle detector counts noise
    - 8.5. Set threshold to TBD low level
      - 8.5.1. Verify no noise counts
    - 8.6. Set threshold to nominal
    - 8.7. Turn off Particle Detector HV
  - 9. High Voltage Test:
    - 9.1. Enable the High Voltage Supplies (all supplies set to zero)
      - 9.1.1. Verify nominal current consumption on the HV 28V supply9.1.2. Verify HVPS outputs remain at zero
    - 9.2. Command each supply in turn to a low level (100V ?), then back to zero 9.2.1. Verify the correct supply increases by the nominal; amount
      - 9.2.2. Verify the HV 28V supply current is nominal
  - 10. Cryocooler Control Test:
    - 10.1. Command a series of cryocooler control modes (cryocooler still powered off) 10.1.1. Verify state of health housekeeping response to each mode
    - 10.2. Command a diagnostic Cryocooler control waveform packet for each mode

- 10.2.1. Verify waveform is nominal
- 10.3. Set the cryocooler control to zero.
- 11. CPC Test
  - 11.1. Power on the Cooler Supply
    - 11.1.1. Verify nominal (small) current consumption on Cooler service and no increase on Instrument service
  - 11.2. CPC / Cryocooler test (requires Spectrometer attached to CPC; MOVE THIS TO SPECTROMETER FUNCTIONAL TEST ?)
    - 11.2.1. Set the cryocooler control to a low power level (corresponding to 20W).
      - 11.2.1.1.Verify increase in cooler power service current consumption (by about 20W).
      - 11.2.1.2. Verify the accelerometer waveform in instrument SOH (no vibration damper)
    - 11.2.2. Set the nominal Vibration Damper power & phase corresponding to the cooler power level and cold tip temperature
      - 11.2.2.1. Verify nominal cooler power service increment
      - 11.2.2.2. Verify reduced accelerometer waveform in instrument SOH
  - 11.3. Set the cooler and damper controls to zero, and power off the cooler power service
- 12. Cold plate Heaters test
  - 12.1. Enable the Cold Plate Heater Supply (100V)
    - 12.1.1. Verify the supply comes on via the SOH telemetry
  - 12.2. Power off the Cold Plate Heater (Further testing will be included in Spectrometer functional)
- 13. Imager Heater Test
  - 13.1. Power-on the Spacecraft Switched Service to the Instrument
    - 13.1.1. Verify switched service 28V via instrument SOH
  - 13.2. Power on each imager heater directly in sequence (bypass the on-board control software)
    - 13.2.1. Verify 28V on the associated heater service via instrument SOH
- 14. Actuator Test
  - 14.1. Power-on the Spacecraft Switched Service to the Instrument
    - 14.1.1. Verify switched service 28V via instrument SOH
  - 14.2. Enable the Actuator power service
    - 14.2.1. Verify actuator 10V supply via instrument SOH
  - 14.3. Determine if any of the actuators are connected and may be fired; DO NOT FIRE ANY ACTUATOR WITHOUT OK FROM SYSTEM ENGINEER. CAN DAMAGE THE INSTRUMENT.
    - 14.3.1. If any actuator OK to fire, fire the actuator (measure actuation time)
      - 14.3.1.1. Verify actuator operation visually
      - 14.3.1.2. Verify actuator position change via instrument SOH data
      - 14.3.1.3.Re-stow device if necessary
  - 14.4. Disable the Actuator power service and power-off the Switched Power service.
- 15. Instrument Heater Test
  - 15.1. Power on the Instrument (IDPU) heater service
    - 15.1.1. Verify heater service power in the instrument SOH data.

#### 9. Test Objectives:

Verify the IDPU functionality, including:

- 1. All electrical interfaces to the spacecraft are functional.
  - 1.1. Power Interfaces
    - 1.1.1. Instrument Power
    - 1.1.2. Cooler Power
    - 1.1.3. IDPU Heater Power

- 1.1.4. Switched Services Power
- 1.2. Temperature Sensor Interfaces
  - 1.2.1. IDPU
  - 1.2.2. IPC
  - 1.2.3. CPC
  - 1.2.4. Spectrometer
  - 1.2.5. RAS
- 1.3. Signal Interfaces
  - 1.3.1. Serial In
  - 1.3.2. Serial Out
  - 1.3.3. High Speed (SSR)
  - 1.3.4. Clock
  - 1.3.5. Reset
  - 1.3.6. Safe
- 2. Nominal Instrument state-of-health telemetry
- 3. Particle Detector
- 4. Power Controller Board:
  - 4.1. IPC control (switches)
  - 4.2. CPC Control
  - 4.3. HVPS control
  - 4.4. Actuator Control & Status
  - 4.5. Heater Control
    - 4.5.1. Imager Heaters
    - 4.5.2. Cold Plate Heaters
- 5. Detector Interface Board Control
  - 5.1. AFE Power Switches
  - 5.2. Threshold DACs
  - 5.3. Test Pulser & Internal test modes
  - 5.4. Data Collection Modes
- 6. Data collection and transmission through the system

NOTE: see Section 16, note 1 and 2.

#### 10. Success Criteria:

- 1. The spacecraft interface must function correctly
- 2. All Instrument functions must operate nominally
- 3. System response must meet Mission Requirements

### 11. Hardware Requirements:

- 1. IDPU, including:
  - 1.1. IDPU VME Chassis (Including Particle Dertector)
  - 1.2. Instrument Power Converter (IPC)

#### 1.3. Cryo Power Converter (CPC)

- 2. Instrument Harnesses: 2.1. IDPU/IPC/CPC harness
- 3. Spacecraft Bus, including at least:

- 3.1. SEM
- 3.2. Solid State Recorder
- 3.3. Spacecraft Harness (including Spacecraft to Instrument harness)
- 3.4. Power System (some of which may be GSE simulators)
- 4. Spacecraft GSE, including at least:
  - 4.1. Spacecraft to GSE Harness (assume taking data directly from SEM)
  - 4.2. Power rack
  - 4.3. SCAT rack
  - 4.4. ITOS system

#### 12. Software Requirements:

ITOS database must include IDPU entries (commands and telemetry).

#### 13. Facility Requirements:

#### 14. System Dependencies:

IDPU, Spacecraft Bus, and GSE shall have previously completed individual (pre-integration) functional tests.

#### **15. Staffing Requirements:**

The following people or their delegates are required:

Dave Curtis, IDPU, System John Jordan, Spacecraft Bus Test Conductor (ITOS operator) Ron Jackson, QA ?

#### 16. Notes/Comments

- 1. Interfaces to the Imager, RAS, and Spectrometer (including the ADP and most of the CPC and AFE functionality) shall be tested as part of those subsystem's functional tests. Alternatively, for the Spectrometer signal interface, this can be tested using the Image Generation procedure
- 2. IDPU Internal Software functionality shall not be tested here (beyond that needed to check hardware functionality). Software functionality is checked in the Software Acceptance Test.

#### **18. Failure Implications**

Delay for repair.

### IDPU - Spectrometer Interface Test Specification

| 1. Test Name:        | HESSI IDPU to Spectrometer Interface Test |
|----------------------|-------------------------------------------|
| 2. Ref. Code:        | IIT_Spec/Img                              |
| 3. Point of Contact: | Dave Curtis                               |
| 4. System:           | Instrument                                |
| 5. Subsystem:        | IDPU and Spectrometer                     |
| 6. Test Duration:    | 2 days                                    |
| 7. Contingency Time: |                                           |

#### 8. Test Description:

Starting condition:

- 6. IDPU and Spectrometer are mechanically integrated with spacecraft
- 7. IDPU is electrically mated to the spacecraft, and has completed its interface test
- 8. Spacecraft is connected to the spacecraft GSE, and is ready for operations
- 9. Spectrometer is mated with the spectrometer nitrogen cooling system, which is keeping the detectors cold.
- 10. IDPU to Spectrometer harness is mated to Cryocooler and Actuator Simulation loads and Breakout boxes, NOT to Spectrometer.
- 11. Actuator and High Voltage Enable plugs are installed in IPC.
- 12. Radiator cooling system is functional.

Testing steps:

- 1. Verify IDPU to Spectrometer instrument harness:
  - 1.1. Power up the spacecraft and IDPU Instrument power services.
  - 1.2. Verify IDPU is responsive
  - 1.3. Verify no voltage on Spectrometer harness in IDPU SAFE mode (power-up default)
  - 1.4. Command IDPU to provide power systems to spectrometer sequentially and verify voltage levels on harnesses and load simulators
  - 1.5. Verify Cryocooler and Actuator power supplied on command to IDPU
- 2. Power off IDPU, mate IDPU to Spectrometer harness to Spectrometer
- 3. Power on IDPU
- 4. Verify Spectrometer temperature sensors read appropriate levels.
- 5. Sequence up the cryocooler to cool the detectors down to nominal levels. Verify Cryocooler is functioning nominally. Continue testing while detectors cool. Disconnect Nitrogen cooling system.
- 6. Manually actuate Vacuum valve location switch and verify telemetry (cannot open vacuum valve in air).
- 7. Test each of the shutter actuators. Verify motion visually and via telemetry. Recage the shutters on completion.
- 8. Verify accelerometer. Command an accelerometer reading. May be able to see vibration due to the cryocooler. If not, may need to artificially vibrate the spacecraft by applying a low level periodic motion (TBD).
- 9. Power on the CSAs. Verify telemetry (no counts with HV off).
- 10. If the detectors are cold enough (should be), ramp up the high voltage. Verify voltage level telemetry, background counting rate.

- 11. Command the internal test pulser through a TBD sequence and verify telemetry
- 12. Wait till cold plate has reached operational temperature; set cooler to maintenance power level.
- 13. Verify detector noise the shold level (program thershold level via IDPU and monitor count rates).
- 14. With a set of calibration sources, verify system X-ray response
- 15. Power off cryocooler, verify operation of cold plate heaters (staying below 100K).
- 16. Power-down high voltages, power off IDPU.
- 17. Reattach and start up Nitrogen cooling system
- 18. Remove High Voltage and Actuator enable plugs from IPC.

#### 9. Test Objectives:

Verify the IDPU to Spectrometer electrical interfaces function properly. This includes:

- 1. Harness connectivity
- 2. Crycooler power interface (to CPC)
- 3. Radiator/Cryocooler Heaters and temperature sensors
- 4. Cold Plate Heaters
- 5. Cryostat temperature sensors
- 6. Vacuum valve actuator
- 7. Shutter actuator test
- 8. Accelerometer test
- 9. CSA Power, Signals
- 10. Detector high voltage supplies test
- 11. Calibration pulser
- 12. Detector noise threshold
- 13. System X-ray response (energy, throughput)

#### 10. Success Criteria:

- 1. Each interface must function correctly
- 2. System response must meet Mission Requirements (these will have been verified at Spectrometer functionals, but must be re-verified in the flight configuration):
  - 2.1. Noise threshold must be <20keV required, 3keV goal (SCI-1.1)
  - 2.2. Energy resolution 3keV FWHM 20keV to 1MeV Required, 0.5keV 3keV to 1MeV goal (SCI-1.2)

#### 11. Hardware Requirements: IDPU, including: IDPU VME Chassis

#### Instrument Power Converter (IPC) Cryo Power Converter (CPC)

- 5. Spectrometer, including:
  - 5.1. Cryostat Assembly
  - 5.2. Shutter Assembly
- 6. Instrument GSE, including:
  - 6.1. Spectrometer Nitrogen GSE
  - 6.2. Spectrometer Radiator cooling system (may be part of spacecraft GSE)
  - 6.3. Cryocooler simulation load
  - 6.4. Actuator simulation loads
  - 6.5. Breakout boxes
  - 6.6. TBD Radiation Sources
- 7. Instrument Harnesses:
  - 7.1. IDPU/IPC/CPC harness
  - 7.2. IDPU/Spectrometer harness
- 8. Spacecraft Bus, including at least:
  - 8.1. SEM

- 8.2. Solid State Recorder
- 8.3. Spacecraft Harness (including Spacecraft to Instrument harness)
- 8.4. Power System (some of which may be GSE simulators)
- 9. Spacecraft GSE, including at least:
  - 9.1. Spacecraft to GSE Harness (assume taking data directly from SEM)
  - 9.2. Power rack
  - 9.3. SCAT rack
  - 9.4. ITOS system

#### 12. Software Requirements:

ITOS database must include IDPU entries (commands and telemetry).

#### 13. Facility Requirements:

SIF (Note radiation sources will be used, so access to SIF clean area shall be limited).

#### 14. System Dependencies:

IDPU, Spectrometer, Spacecraft Bus, and GSE shall have previously completed individual functional tests. The "IDPU Functional" shall have been completed to verify spacecraft to IDPU interfaces.

#### **15. Staffing Requirements:**

The following people or their delegates are required:

Dave Curtis, IDPU VME Peter Berg, IDPU Power Paul Turin, Spectrometer Bob Campbell (Detectors) John Jordan, Spacecraft Bus Test Conductor (ITOS operator) Ron Jackson, QA ?

#### 16. Notes/Comments

#### **19. Failure Implications**

Delay for repair. May be a significant delay if problem is inside Cryostat.

### Spectrometer Electrical Functional Test Spec

- 1. Test Name: Spectrometer Functional (Electrical)
- 2. Ref. Code: CPT\_Spec\_Elec
- 3. Point of Contact: D. Smith
- 4. System: Instrument
- 5. Subsystem: Spectrometer
- 6. Test Duration: 3 hours
- 7. Contingency Time: 2 hours

#### 8. Test Description:

Starting condition:

- 1) Spacecraft and instruments are fully integrated
- 2) Radiator cooling system is functional
- 3) Actuator and high-voltage enable plugs are installed in IPC
- 4) IDPU and spacecraft are powered on
- 5) Detectors have been brought to operating temperature by the cryocooler
- 6) There is no other activity around the spacecraft

#### Testing steps:

- 1) Power on the CSAs. Verify in telemetry.
- 2) Ramp up HV in 100 V steps for each detector, stopping each one when it reaches nominal voltage OR if the reset rate in a segment exceeds the expected value.
- 3) For each detector segment, verify that the reset rate remains nominal
- 4) For each detector segment, verify that the noise threshold meets Mission Requirements
- 5) For each detector segment, verify that resolution meets Mission Requirements (use the 81 keV line of Ba-133 and the 1.1 and 1.3 MeV lines of Co-60; the data for 5) and 6) may be taken simultaneously).
- 6) For each detector segment, verify that the detector active volume remains nominal (using the Co-60 source at 0.5 m from the spacecraft in the +/-x and +/- y directions). Expected count rates will be prepared in advance.

#### 9. Test Objectives:

Verify that all 18 detector segments are functioning in a way that

- 1) Meets Mission Requirements, and
- 2) Indicates no serious degradation since the last spectrometer functional test

#### 10. Success Criteria:

Each detector segment meets:

- 1) Noise threshold per requirement SCI-1.1 AND not worse than the last functional by an amount TBD
- 2) Resolution per requirement SCI-1.2 AND not worse than the last functional by an amount TBD
- 3) Detector active volume not worse than the last functional by an amount TBD
- The baselines for the very first spectrometer functional will be taken from spectrometer subsystem tests.

#### 11. Hardware Requirements:

1) Spacecraft integrated with IDPU and spectrometer

2) Instrument GSE, including:

- 2.1) Spectrometer radiator cooling system
- 2.2) Calibrated 100 uCi Ba-133 and Co-60 sources
- 3.3) Source stand, yardstick and level for source placement
- 3) Spacecraft GSE, including:
- 3.1) Spacecraft to GSE harness
- 3.2) Power rack
- 3.3) SCAT rack
- 3.4) ITOS system

#### 12. Software Requirements:

- 1) Realtime display of instrument housekeeping data (temperatures, voltages, reset rate)
- 2) Realtime acquisition and display of spectra
- 3) Saving of spectra for analysis offline

#### 13. Facility Requirements:

#### 14. System Dependencies:

Spacecraft, IDPU, and GSE shall have passed functional tests since the last change in condition (environmental test, transport, etc.)

#### **15. Staffing Requirements:**

The following people or their delegates are required: Bob Campbell (detectors) Test Conductor (ITOS operator)

#### 16. Notes/Comments

#### **11. Failure Implications**

Failure to meet mission requirements may result in a significant delay to swap out or repair a detector.

Continual degradation of a detector which could be expected to imply that the detector would fail to

meet mission requirements within the first year on orbit, even if mission requirements are currently met, may result in a significant delay to swap out or repair a detector.

Minor failures to match the results of a previous functional may result in a change in operating voltage or other minor adjustments.

### Spectrometer Mechanical Thermal Functional

- 1. Test Name: Spectrometer Functional (Mechanical/Thermal)
- 2. Ref. Code: CPT\_Spec\_MechTherm
- 3. Point of Contact: P. Turin
- 4. System: Instrument
- 5. Subsystem: Spectrometer
- 6. Test Duration: 1.5 days
- 7. Contingency Time: 0.5 days

#### 8. Test Description:

Starting condition:

- 1) Spacecraft and instruments are fully integrated
- 2) Radiator cooling system is functional
- 3) Actuator and HV enable plugs installed in IPC
- 4) IDPU and spacecraft are powered on

#### Testing steps:

- 1) Pump down cryostat, turn off pump, turn on ion gauge.
- 2) Turn on coldplate heaters for beginning of cooldown cycle; measure a temperature change of at least TBD degrees.
- 3) Perform a flight-like structured cooldown overnight verify temperature profile and monitor vibration levels.
- 4) Leak-check cryostat by ion gauge measurment after cooldown.
- 5) Electrical continuity test of the one-shot valve actuator.
- 6) Operational test of the shutter actuators (including caging and override SMAs). Monitor both visually and in telemetry.
- 7) Turn on radiator heaters, measure a temperature change of at least TBD degrees, turn off.

#### 9. Test Objectives:

Verify that all spectrometer thermal and mechanical systems are functioning normally

#### 10. Success Criteria:

- 1) Coldplate temperature reaches expected value in expected time.
- 2) Cryocooler vibration levels not more than TBD and not significantly worse than baseline.
- 3) Radiator and coldplate heaters produce expected change in temperature in expected time (prediction ready in advance).
- 4) Cryostat leakage rate less than TBD/day.
- 5) One-shot valve actuator circuit intact.6) All shutter-actuator SMAs activate in the expected time.

#### **11. Hardware Requirements:**

1) Spacecraft integrated with IDPU and spectrometer

#### 2) Spectrometer GSE:

- 2.1) radiator cooling system
- 2.2) vacuum GSE
- 2.3) ion gauge GSE
- 3) Spacecraft GSE, including:
  - 3.1) Spacecraft to GSE harness
  - 3.2) Power rack
  - 3.3) SCAT rack
  - 3.4) ITOS system

#### 12. Software Requirements:

Realtime display of instrument housekeeping data (temperatures, voltages, status bits)

#### 13. Facility Requirements:

#### 14. System Dependencies:

#### **15. Staffing Requirements:**

The following people or their delegates are required: Paul Turin (spectrometer) Test Conductor (ITOS operator)

#### 16. Notes/Comments

If the coldplate and detectors are already cold from the LN2 loop, step 2 will be skipped and step 3 will take less time.

Steps 5, 6, and 7 may take place during step 3.

#### **17. Failure Implications**

Failure of the cooler or coldplate heaters may result in a significant delay (weeks) to open the cryostat and repair or replace the affected components.

Failure of the shutter actuator systems will require removing the cryostat from the spacecraft for repairs (days).

Failure of the radiator heaters might be fixed in hours.

Certain failure modes of the shutter actuators might be accepted without repair if the failures occurred near launch time. **RAS Functional Test Specification** 

- 1. Test Name:
- 2. Ref. Code:
- 3. Point of Contact:
- 4. System:
- 5. Subsystem:
- 6. Test Duration:
- 7. Contingency Time:
- 8. Test Description:

# 3. Starting conditions:

**Electronics Functional Test RAS** Func-RAS

### **Reinhold Henneck** Instrument

#### Imager 4 h

3.1.RAS and IDPU are mechanically integrated with spacecraft, RAS baffle is covered with LED cover. LED is connected to LED driver 3.2. IDPU is electrically mated to s/c and has completed its interface test 3.3.IDPU is connected to its GSE

### 4. Testing steps:

4.1. verify IDPU to RAS harness by loading simulators

4.1.1. power up s/c and IDPU Instrument power services

4.1.2. verify that IDPU is responsive

4.1.3. verify no voltage on RAS harness in IDPU SAFE mode (power-up default)

4.1.4. command IDPU to provide power to RAS sequentially and verify voltage levels on harnesses and load simulators

### 4.1.5. verify that external LED works

- 4.2. Power off IDPU, mate IDPU to RAS
- 4.3. Power on IDPU

4.4. verify RAS temperature sensors read appropriate levels

4.5. set temperature stabilization system to some non-ambient value and verify that system works

4.6. actuate RAS shutter. Verify optically by removing baffle cover. Reset the shutter pinpuller and verify optically. Remount baffle cover. 4.7. Power-on RAS and verify performance parameters:

4.7.1. command the internal test pulser with TBD sequence

- 4.7.2. verify telemetry for the different RAS modes
- 4.7.3. record full RAS image
- 4.7.4. dark level image data at given temperature
- 4.7.5. switch-on external LED and operate RAS in event-mode
- 4.7.6.
- 4.7.7.
- 4.7.8.
- 4.7.9.

| 9. Test Objectives:                               | test functionality and performance (reduced) of RAS after assembly on s/c                                                               |
|---------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|
| 10. Success Criteria:                             | system must meet requirements obtained during autonomous calibration                                                                    |
| 11. Hardware Requirements:                        | 5                                                                                                                                       |
|                                                   | IDPU, including IDPU VME Chassis and<br>ADP/RAS Power Converter<br>RAS                                                                  |
|                                                   | RAS GSE (load simulator, external LED driver)<br>Harnesses (IDPU/RAS, external LED driver<br>harness)                                   |
|                                                   | S/C bus, including S/C to IDPU harness S/C GSE                                                                                          |
| 12. Software Requirements:                        | FM software developed to control and analyze RAS                                                                                        |
| 13. Facility Requirements:                        | 220 V AC power, manual access to RAS for resetting pinpuller, space for GSE $(2x2 \text{ m}^2)$                                         |
| 14. System Dependencies:                          | IDPU, S/C bus, S/C GSE, RAS, RAS GSE have been successfully tested on their own                                                         |
| 15. Staffing Requirements:<br>16. Notes/Comments: | R. Henneck, A. Mchedlishvili                                                                                                            |
| 17. Failure Implications:                         | emergency. Delay for repair, may be significant<br>if RAS has to be dismounted, because then<br>also the RAS alignment has to be redone |

# SAF + Imager Temperature Functional Test Specification

| 1. Test Name:        | Functional Test SAS + imager temperature<br>control |
|----------------------|-----------------------------------------------------|
| 2. Ref. Code:        | Func-SAS                                            |
| 3. Point of Contact: | Reinhold Henneck                                    |
| 4. System:           | Instrument                                          |
| 5. Subsystem:        | Imager                                              |
| 6. Test Duration:    | 4 h                                                 |
| 7. Contingency Time: |                                                     |
| 8. Test Description: |                                                     |

### 5. Starting conditions:

5.1. imager and IDPU are mechanically integrated with spacecraft, SAS dust covers remain mounted

5.2.IDPU is electrically mated to s/c and has completed its interface test 5.3.IDPU is connected to its GSE

#### 6.Testing steps:

6.1. verify IDPU to SAS harness by loading simulators

6.1.1. power up s/c and IDPU Instrument power services

6.1.2. verify that IDPU is responsive

6.1.3. verify no voltage on SAS harness in IDPU SAFE mode (power-up default)

6.1.4. verify no voltage on heater/sensor harness in IDPU SAFE mode (power-up default)

6.1.5. command IDPU to provide power to SAS sequentially and verify voltage levels on harnesses and load simulators

6.1.6. command IDPU to provide power to heater/sensor system sequentially and verify voltage levels on harnesses and load simulators

6.2. Power off IDPU, mate IDPU to SAS and heater/sensors 6.3. Power on IDPU

6.4. verify temperature sensors read appropriate levels

6.5. set temperature stabilization system to some non-ambient temperature and verify that temperature follows

6.6. Power-on SAS and verify performance parameters:

6.6.1. command the internal test pulser with TBD sequence

6.6.2. verify telemetry for the different SAS modes

6.6.3. record full SAS image

6.6.4. dark level image data at given temperature

6.6.5.

6.6.6.

6.6.7.

6.6.8.

| 9. Test Objectives:   | test functionality and performance (reduced) of SAS  |
|-----------------------|------------------------------------------------------|
|                       | and of the imager temperature control after assembly |
|                       | on s/c                                               |
| 10. Success Criteria: | system must meet requirements obtained during        |
|                       | autonomous calibration                               |

| 11. Hardware Requirements:                        | IDPU, including IDPU VME Chassis and ADP/SAS                                                 |  |  |
|---------------------------------------------------|----------------------------------------------------------------------------------------------|--|--|
| -                                                 | Power Converter and temperature control Power                                                |  |  |
|                                                   | Converter                                                                                    |  |  |
|                                                   | Full imager with SAS                                                                         |  |  |
|                                                   | SAS GSE (load simulators for SAS and heater/sensors)                                         |  |  |
|                                                   | Harnesses (IDPU/SAS, IDPU/heater/sensors)                                                    |  |  |
|                                                   | S/C bus, including S/C to IDPU harness                                                       |  |  |
|                                                   | S/C GSE                                                                                      |  |  |
| 12. Software Requirements:                        | FM software developed to control and analyze SAS and temperature control                     |  |  |
| 13. Facility Requirements:                        | space for GSE (2x2 m <sup>2</sup> )                                                          |  |  |
| 14. System Dependencies:                          | IDPU, S/C bus, S/C GSE, SAS, SAS GSE,                                                        |  |  |
| heaters/sensors, heaters/sensors G                | SE have been successfully tested on their own                                                |  |  |
| 15. Staffing Requirements:<br>16. Notes/Comments: | R. Henneck, A. Mchedlishvili                                                                 |  |  |
| 17. Failure Implications:                         | emergency. Delay for repair, may be significant if SAS, heater/sensors have to be dismounted |  |  |

### Integrated Spacecraft Calibration Test Spec

- 1. Test Name: Integrated Spacecraft Calibration
- 2. Ref. Code: SFT\_Spec\_Cal
- 3. Point of Contact: D. Smith
- 4. System: Instrument
- 5. Subsystem: Spectrometer
- 6. Test Duration: 1 day
- 7. Contingency Time: 1 day

#### 8. Test Description:

Starting condition:

- 1) Spacecraft and instruments are fully integrated
- 2) Radiator cooling system is functional
- 3) Actuator and high-voltage enable plugs are installed in IPC
- 4) IDPU and spacecraft are powered on
- 5) Detectors have been brought to operating temperature by the cryocooler, CSAs and HV are on, and detectors are operating nominally
- 6) There is no other activity around the spacecraft

Test steps:

 Ba-133 and Co-60 sources are moved into pre-planned positions within 2 m of the spacecraft to test the transmission of various components (spacecraft deck, IDPU boxes, struts, etc.) Spectra are accumulated through telemetry for each configuration. The exact positions are TBD.

2) All positions are repeated to test reproducibility.

- 3) A quick check is made for consistency between runs and rough consistency with predictions (prepared in advance).
- 4) Data are stored for future use.

#### 9. Test Objectives:

Verify and/or correct Monte Carlo simulations of absorption and scattering from spacecraft components.

#### 10. Success Criteria:

The two data sets taken are roughly consistent and the data are available for use after the test.

Since this is a calibration rather than a test, the actual values recorded are not part of the success criteria, just their availability.

#### 11. Hardware Requirements:

- 1) Spacecraft integrated with IDPU, spectrometer, and imager
- 2) Instrument GSE, including:
  - 2.1) Spectrometer radiator cooling system
  - 2.2) Calibrated 100 uCi Ba-133 and Co-60 sources
  - 3.3) Source stand, yardstick and level for source placement
- 3) Spacecraft GSE, including:
  - 3.1) Spacecraft to GSE harness
  - 3.2) Power rack
  - 3.3) SCAT rack
  - 3.4) ITOS system

#### 12. Software Requirements:

- 1) Realtime display of instrument housekeeping data (temperatures, voltages, reset rate)
- 2) Realtime acquisition and display of spectra
- 3) Saving of spectra for analysis offline

#### 13. Facility Requirements:

#### 14. System Dependencies:

Spacecraft, IDPU, GSE, and spectrometer shall have passed functional tests.

#### **15. Staffing Requirements:**

The following people or their delegates are required: Bob Campbell (detectors) Test Conductor (ITOS operator)

#### 16. Notes/Comments

#### **17. Failure Implications**

Failure to acquire these calibration data increases the uncertainty in the spectroscopic response. Since the only failure mode is not to acquire the data, the worst resulting delay is the need for a repetition of the test.

### **TMS Test Specification**

1. Test Name:

### **After Shipment TMS Tests**

- 2. Ref. Code: TMS-US-0
- 3. Point of Contact: Alex Zehnder
- 4. System:
- 5. Subsystem: Imager
- 6. Test Duration: 1 day
- 7. Contingency Time:
- 8. Test Description:

Determine the twist between trays and grid pairs after shipment.

### 1. Starting conditions:

- Imager unpacked, sitting in the shipment rack TMS stand in place,
- TMS CCD focal plane camera 1.3m (+- 2mm) above the sunny side of grids of front tray
- Remove thermal blanket if mounted after shipment

Instrument

### 2. Test steps:

- Align TMS stand holding x-y scanner versus imager using alignment lasers at the front end-ring
- Calibrate x-y scanner to imager coordinate system to +- 2 mm using external Lasers
- Step x-y scanner through 11 TMS positions, i.e. 2 for the trays and 9 for grid pairs 1 9 using automated TMS software (Laptop based).
- Determine twist

| 9. Test Objectives:        | Verify stable alignment since last TMS test                                          |  |  |
|----------------------------|--------------------------------------------------------------------------------------|--|--|
| 10. Success Criteria:      | Twist <= 10 arc seconds                                                              |  |  |
| 11. Hardware Requirements: | Imager in shipment rack or S/C bus                                                   |  |  |
|                            | TMS stand,                                                                           |  |  |
|                            | TMS Laptop,                                                                          |  |  |
|                            | LED, and x-y controller                                                              |  |  |
|                            | special cables (15 m long)                                                           |  |  |
| 12. Software Requirements: | TMS S/W in Laptop                                                                    |  |  |
| 13. Facility Requirements: | $L \times W \times H = 2.5 \times 2.5 \times 3.7 \text{ m}^2 \text{ place, stable,}$ |  |  |
|                            | No room light (tests at night?)                                                      |  |  |
|                            | 100W AC power 220V,                                                                  |  |  |
|                            | small lamp and torch light                                                           |  |  |
|                            | table                                                                                |  |  |
| 14. System Dependencies:   | Alignment has to be checked before integration                                       |  |  |
|                            | of imager in S/C                                                                     |  |  |
|                            | I wist has to be compared with previous tests                                        |  |  |
| 15. Statting Requirements: | Alex Zennaer                                                                         |  |  |

| 16. Notes/Comments:       | Whenever any operation above grids is         |
|---------------------------|-----------------------------------------------|
|                           | required, then protection cover for grid tray |
|                           | must be installed.                            |
| 17. Failure Implications: | emergency, significant delay for repair or    |
|                           | realignment.                                  |

### **GDS L&EO Simulation Test Spect**

| 1. Test Name:        | GDS L&EO Simulation                                    |
|----------------------|--------------------------------------------------------|
| 2. Ref. Code:        | CPT_GDS                                                |
| 3. Point of Contact: | Tim Quinn/UCB                                          |
| 4. System:           | Ground Station, Backup Ground Stations, SCAT, MOC, SOC |
| 5. Subsystem:        | ITOS, SOC Real-time System                             |
| 6. Test Duration:    | 10 Hours                                               |
| 7. Contingency Time: | 2hours                                                 |

#### 8. Test Description:

This test will simulate the launch and early orbit activities from launch through the first N orbits

#### 9. Test Objectives:

Test voice and data operations, data flows through entire system, system performance, on-orbit procedures and activities.

#### **10. Success Criteria:**

Nominal GDS operation and successful completion of L&EO activities.

#### 11. Hardware Requirements:

Spacecraft-to-SCAT-to-MOC interface/network connections. Dynamic orbit simulator.

#### 12. Software Requirements:

Software associated with hardware requirements.

### 13. Facility Requirements:

N/A

# **14. System Dependencies:** N/A

#### **15. Staffing Requirements:**

Test conductor operating TCW, launch day personnel (Flight Operations Team, instrument personnel, Spectrum Astro personnel).

#### 16. Notes/Comments

### **GDS Normal Ops Simulation Test Spec**

| 1. Test Name:        | GDS Normal Operations Simulation  |
|----------------------|-----------------------------------|
| 2. Ref. Code:        | I&T-GDS-Sim                       |
| 3. Point of Contact: | Tim Quinn, UCB                    |
| 4. System:           | Berkeley Ground Station, MOC, SOC |
| 5. Subsystem:        | All MOC systems, all SOC systems  |
| 6. Test Duration:    | 8 hours                           |
| 7. Contingency Time: | 2 hours                           |

#### 8. Test Description:

This test will simulate a normal operations day for HESSI.

#### 9. Test Objectives:

Confirm autonomous functioning of GDS for all routine telemetry and command operations.

#### **10.** Success Criteria:

Nominal performance of all systems and procedures.

#### **11. Hardware Requirements:**

Spacecraft-to-SCAT-to-MOC interface/network connections, dynamic orbit simulator.

#### **12. Software Requirements:**

Software associated with hardware requirements.

**13. Facility Requirements:** N/A

**14. System Dependencies:** N/A

**15. Staffing Requirements:** Test conductor, normal FOT staffing.

16. Notes/Comments

### **GDS** Anomaly Simulation Test Specification

| 1. Test Name:        | GDS Anomaly Simulation            |
|----------------------|-----------------------------------|
| 2. Ref. Code:        | CPT_GDS                           |
| 3. Point of Contact: | Tim Quinn/UCB                     |
| 4. System:           | Berkeley Ground Station, MOC, SOC |
| 5. Subsystem:        | All MOC systems, all SOC systems  |
| 6. Test Duration:    | 4                                 |
| 7. Contingency Time: | 2                                 |

#### 8. Test Description:

Introduce anomalous spacecraft and GDS conditions and test system and FOT response.

#### 9. Test Objectives:

Test GDS and FOT anomaly response.

#### **10. Success Criteria:**

Nominal operation of GDS and FOT.

#### **11. Hardware Requirements:**

Spacecraft-to-SCAT-to-MOC interface/network connections, dynamic orbit simulator.

#### 12. Software Requirements:

Software associated with hardware requirements.

# **13. Facility Requirements:** N/A

**14. System Dependencies:** N/A

# **15. Staffing Requirements:** Test conductor, normal FOT staffing.

#### 16. Notes/Comments

### **Test Support Plan**

### Test Support at Spectrum Astro

SSL shall support the following tests at Spectrum Astro (ref. Spacecraft Bus Master Program Schedule):

Instrument I/F Test Install S/A Wings, IAD, First Motion, Remove S/A Wings Functional Test

### Test Support At Berkeley

TBS

### **Test Support at Environmental Testing** TBS

### Test Support at VAFB

TBS

### Shipment of GSE from VAFB to KSC on the OSC OCA

OSC specifies the following constraints for shipping GSE on the OCA:

The OCA can carry a maximum of 1500 lbs. of customer racks. Each rack must be carried on to the airplane, therefore the weight of each rack should not exceed 300 - 400 lbs. The racks will be side loaded so the equipment must be able to be transported as such.

Test Support at KSC

# Procedures

| HESSI Launch Site Procedures                  |             |          |         |
|-----------------------------------------------|-------------|----------|---------|
| Test                                          | Procedure # | VAFB 836 | VAFB 15 |
|                                               |             |          |         |
| Spacecraft Off-Load from Truck Procedure      |             |          |         |
| Lifting Procedures                            |             |          |         |
| Unpack Spacecraft and GSE Procedures          |             |          |         |
| Setup GSE Racks Procedures                    |             |          |         |
| Install Solar Arrays Procedures               |             |          |         |
| Setup Solar Array First Motion GSE Procedures |             |          |         |
| Solar Array First Motion Test Procedure       |             |          |         |
| Solar Array Illumination setup Procedure      |             |          |         |
| Solar Array Illumination Test Procedurre      |             |          |         |
| Spacecraft Functional Test Procedure          |             |          |         |
| Battery Conditioning Procedure                |             |          |         |
| Cryostat Vacuum Pump Procedures               |             |          |         |
| Cryostat Leak Check Procedure                 |             |          |         |
| TMS Setup Procedure                           |             |          |         |
| TMS Test Procedure                            |             |          |         |
| Spacecraft Mate to Tipover Machine Procedure  |             |          |         |
| Spacecraft Tipover Procedure                  |             |          |         |
| Spacecraft Mate to Byrd-Mobile Procedure      |             |          |         |
| Spacecraft Mate to Launch Vehicle Procedure   |             |          |         |
| Spacecraft de-Mate from Byrd Mobile Procedure |             |          |         |

HSI\_MIT\_001C.doc, HESSI Mission Integration & Test Plan