
EUV IMAGING SPECTROMETER
Hinode
EIS SOFTWARE NOTE No. 21

Version 1.1
[bookmark: _GoBack]	7 January 2015

The WINDATA routines for EIS data analysis

Peter Young
George Mason University
4400 University Drive
Fairfax, VA 22030
U.S.A.

pyoung9@gmu.edu

Introduction
The routine eis_getwindata extracts a wavelength window from an EIS data file and puts it into an IDL structure along with a set of metadata. A number of routines make use of the windata structure, for example the eis_auto_fit routine described in EIS Software Note No. 16. In addition there are a number of routines that perform operations on the windata structure, and these routines are described in the present Software Note.

	Routine
	Purpose

	eis_join_windata
	Join two windatas together in wavelength direction.

	eis_bin_windata
	Spatially bin windata in X and/or Y directions.

	eis_trim_windata
	Reduce the wavelength range of a windata.

	eis_combine_sitstare_windata
	Join two sit-and-stare windatas in time direction.

	eis_shift_spec
	Interpolate all spatial pixels onto common wavelength scale.

	eis_fix_windata
	Remove data anomalies from windata.

	eis_sat_windata
	Set saturated data to missing when using /refill.

eis_join_windata (concatenate two windata structures)
An EIS study may contain two wavelength windows that are very close to each other or even directly adjacent. In some circumstances it may be useful to concatenate the two windows in the wavelength direction. For example, if the spectrum in a window is congested and it is not easy to identify a good background region for performing line fitting. Two wavelength windows can be concatenated by doing:

IDL> wd1=eis_getwindata(l1name, wvl1)
IDL> wd2=eis_getwindata(l1name, wvl2)
IDL> wd=eis_join_windata(wd1,wd2)
[bookmark: _Ref195677577]eis_bin_windata (spatial binning)
To increase signal-to-noise for weak lines it may be useful to perform spatial binning. This is performed with eis_bin_windata, e.g.,

IDL> wd=eis_getwindata(l1name, wvl)
IDL> wdnew=eis_bin_windata(wd,xbin=3,ybin=3)

By default the routine starts binning from pixel (0,0), i.e., the bottom left corner of the spatial image. The keywords xstart= and ystart= can be used to change the starting pixel.

If you are using the offset array to characterize the wavelength offsets (see Software Note No. 16), then this can also be input to eis_bin_windata:

IDL> wdnew=eis_bin_windata(wd,xbin=3,ybin=3,offset=offset)

and it will be binned in the same way as wd. Note that offset will be overwritten with the new array.
[bookmark: _Ref195678289]eis_trim_windata (trim wavelength range)
This routine is intended for when eis_auto_fit is used for full CCD data-sets. The usage is:

IDL> wd=eis_getwindata(l1name,195.12)
IDL> wdnew=eis_trim_windata(wd,[194.5,196])

The initial wd structure contains data arrays that cover the complete CCD range of 1024 pixels, while wdnew contains arrays that only span the wavelength range 194.5 to 196.0 Å.

The new structure, wdnew, can be used with the eis_auto_fit suite of routines in the same way as other windata structures.
eis_combine_sitstare_windata (combining multiple sit-and-stare data-sets)
Often a long sit-and-stare sequence will be split over multiple FITS files and it is useful to combine the individual data windows into one large window. This can be done as follows:

IDL> wd1=eis_getwindata(fname1,wvl)
IDL> wd2=eis_getwindata(fname2,wvl)
IDL> wdnew=eis_combine_sitstare_windata(wd1,wd2)

This new windata structure can then be processed with eis_auto_fit in the normal way.
eis_shift_spec (interpolate onto common wavelength scale)
The slit tilt and spectrum drift mean that the wavelength scale for EIS rasters changes across the raster, both in X and Y. The offset relative to the default wavelength scale (stored in windata.wvl) is stored in windata.wave_corr. The routine eis_auto_fit operates by fitting each spatial pixel by taking the intensity from windata.int and using the wavelength vector that has been corrected for the wave_corr value at that pixel.

An alternative way of doing things is to interpolate the intensity array to make each spatial pixel have the same wavelength scale. This can be done with eis_shift_spec:

IDL> wdnew=eis_shift_spec(wd)

which uses the wave_corr wavelength offsets to interpolate the intensity spectrum at each spatial pixel. After doing this step, one can then send the new windata structure to eis_auto_fit as follows:

IDL> wdnew.wave_corr=0.
IDL> eis_fit_template, wdnew, template
IDL> eis_wvl_select, wdnew, wvl_select
IDL> eis_auto_fit, wdnew, fit, template=template, wvl_select=wvl_select

Note that it is necessary to set wdnew.wave_corr to zero otherwise eis_auto_fit will use it to perform the wavelength correction, which is not necessary after calling eis_shift_spec.
eis_fix_windata (fix data problems)
There are some data anomalies that are not identified by eis_prep, and two of them can be fixed within the windata structure using eis_fix_windata. The first is a problem where data columns are set to 2048 DN, giving anomalously bright intensities, and the second is where the exposure time for a column is zero. The call to fix these is:

IDL> wdnew=eis_fix_windata(wd)

You will see a plot, showing the average intensity as a function of column. You should see a smooth variation, but if there is a “2048 column” then it will be appear as a single spike. The routine tries to identify such spikes automatically, but if it fails then you can adjust the ‘thresh’ optional input. The zero exposure time columns are automatically corrected.
eis_sat_windata (fix saturated data problem)
The /refill option to eis_getwindata imputes the values of missing data, but does not differentiate between the types of missing data (warm pixels, cosmic rays, saturated pixels, etc.). For saturated data we prefer to leave these as missing, as it is not possible to guess what the real value of the intensity is for these pixels. This problem can be fixed by calling eis_sat_windata instead of eis_getwindata:

IDL> wd=eis_sat_windata(file, wvl, /refill)

Note that this routine requires that you have the original level-0 file in your $HINODE_DATA directory tree.

Update history
Version 1.1 – some minor text edits.
