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Plan of the ‘README’

This document is divided into two parts. In the first part we will briefly describe the

theoretical framework of the regularization theory for linear inverse problems which is at the

basis of the algorithm implemented in the software. In the second part we will describe in

more details the architecture and performances of the software.
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PART I: INVERSE PROBLEM AND METHOD
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1. Introduction

This software implements an inversion method for the solution of the general bremsstrahlung

problem (Brown 1971; Brown et al. 2003)

I(ε) =
1

4πR2
nV

∫ ∞

ε

F (E)Q(ε, E)dE . (1)

In this equation ε is the photon energy, I(ε) is the emitted hard X-ray photon spectrum

(photons cm−2 s−1 keV−1); E is the electron energy, F (E) is the density-weighted mean

electron spectrum in the source; Q(ε, E) is the bremsstrahlung cross-section; R is the distance

to the observer, V is the source volume and n is the mean target density. The software

provides reconstructions of F (E) given measurements of I(ε) for different analytic forms of

Q(ε, E).

Equation (1) is a simplified model for the bremsstrahlung emission process in which a

solid-angle-averaged cross section depending only on E and ε (isotropic assumption) and

a mean electron flux differential only in E are used. In general, the correct cross section for

bremsstrahlung photon emission depends also on the emission angle (θ) between the incom-

ing electron and the emitted photon directions (Gluckstern & Hull 1953; Koch & Motz 1959)

while the electron flux is differential in E and in the solid angle Ω describing the incoming

electron direction. It follows that a more realistic model is given by:

I(ε) =
1

4πR2
nV

∫ ∞

ε

∫

Ω

Q(ε, E; θ)F (E,Ω′)dΩ′dE, (2)

where Ω′ ranges from 0 to Ω. The software also addresses the inversion of Eq. (2) by

assuming F (E,Ω′) separable in E and Ω′ and recovering F (E) by choosing an appropriate

form for the angular dependance (Massone et al. 2004).

2. Zero-order regularization method

The first formulation of Tikhonov regularization method is in (Tikhonov 1963). For an ex-

haustive description of regularization theory for linear inverse problems, see (Bertero 1989).

Applications of this approach to the bremsstrahlung problem are in (Craig & Brown 1986;

Piana 1994; Massone et al. 2003; Piana et al. 2003; Kontar et al. 2004).

The method applies to the discretized form

I = AF (3)
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of Eq. (1), where, in general, I is an Nph-vector representing the photon spectrum I(ε), A is

an Nph×Ne matrix representing the cross-section Q(ε, E) and F is an Ne-vector representing

the mean electron spectrum F (E) (we assume Nph ≤ Ne). The basic goal of this approach is

to provide a reliable estimate of F without a priori choosing any parametrized form for F (E).

This task is accomplished by means of a regularization algorithm (zero-order regularization

method) which maintains much of the fidelity in the recovered mean electron spectrum while

notably reducing the noise amplification through the imposition of a degree of smoothness

in the restored solution. In particular, the method seeks for the solution of the minimization

problem

‖AF − I‖2 + λ‖F‖2 = minimum , (4)

where the regularization parameter λ is a positive real number tuning the trade-off between

the fidelity of the data fit and the smoothness of the recovered F.

The algorithm is characterized by the following steps:

1. Computation of the solution of Eq. (4): the formula

Fλ =

Nph∑

k=1

σk

σ2
k + λ

(I,vk)uk (5)

is applied. The set of triples {σk,uk,vk}Nph

k=1 are obtained by computing the Singular

Value Decomposition (SVD) (Golub & van Loan 1993) of the matrix A, i.e. by solving

the shifted eigenvalue problem

Auk = σkvk ATvk = σkuk (6)

where AT is the transpose matrix of A; the real positive numbers σk are the singular

values of A and satisfy σ1 ≥ σ2 ≥ . . . ≥ σNph
; the vectors uk and vk are the singular

vectors of A (for an SVD analysis of the bremsstrahlung problem, see (Piana & Brown

1998)).

2. Optimal choice of the regularization parameter: for each k = 1, . . . , Nph, the software

considers the function

Sλ
k =

1

k

k∑

i=1

rλ
i , (7)

where rλ
i is the i-th normalized regularized residual corresponding to Fλ. If the resid-

uals were randomly distributed, the normalized cumulative residuals would exhibit a

random walk with standard deviation σ = 1/
√

k. In Eq. (7) the normalized regular-

ized residuals rλ
i are increasingly correlated for increasing values of the regularization

parameter λ. Therefore the optimal λ is given by the biggest value of λ for which Sλ
k

is within ±3/
√

k for all k.
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3. Error propagation and resolution

An estimate of the stability of the regularized solution in correspondence with perturbation

of the data is determined by computing the confidence strip of the regularized solution (Piana

1994), i.e. by superimposing regularized Fλ corresponding to several random modifications

of the original photon spectrum.

In order to assess the spectral resolution, the software determines the last significant singular

component in the expansion (5) by applying the condition (Miller 1970)

σk ≥
√

λ . (8)

If σk is the last singular value satisfying (8), the resolution limit is given by the distance

between successive zeros of the last significant singular vector uk.
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PART II: INVERSION SOFTWARE
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1. Main features

The inversion package is made of the following IDL files:

• hsi regularized inversion.pro

• hsi reg invert.pro

• hsi regularisation genova.pro

• hsi reg ge spectralindex.pro

• hsi reg ge rescaling.pro

• hsi reg ge cross section.pro

• hsi reg ge kramers.pro

• hsi reg ge bethe.pro

• hsi reg ge bh elwert.pro

• hsi reg ge cs haug.pro

• hsi reg ge cross3bn.pro

• hsi reg ge ee bremcross.pro

• hsi reg ge directivity.pro

• hsi reg ge angle cross.pro

• hsi reg ge bremss cross.pro

• hsi reg ge regularization.pro

• hsi reg ge confidence.pro

• hsi reg ge inverse snr.pro

Furthermore we include the graphical routine ‘reg ge plot.pro’ and the routine ‘reg ge inver-

sion.pro’ which provides an example of how to run the code in a user-friendly manner.
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1.1. Run of the software

The calling sequence is :

hsi regularized inversion, inputfile, outputfile,$

photon bin position=photon bin position,$

el energy max factor=el energy max factor,$

electron bin=electron bin,$

lambda multiplier=lambda multiplier,$

crosssection=crosssection,$

viewingangle=viewingangle,$

spreadangle=spreadangle,$

Z=Z,$

confidencestrip=confidencestrip

In order to run the code the user must specify input and output filenames. Furthermore the

setup of the software is performed by fixing some keywords. It is not necessary to fix the

keywords. If a keyword is not set, its value is automatically set to the default value.

1.2. Input file

The input file must be an ASCII file organized in 4 columns of single precision data as

follows:

First column : lower energy of photon bin.

Second column : upper energy of photon bin.

Third column : X-ray flux (photons/cm2/s/keV at detector).

Fourth column : 1-σ uncertainty in flux value.

Note that the input photon energy array should have no data gaps, and it must be uniformly

spaced (on either a linear or logarithmic scale). The input spectrum must contain at least

10 points. We strongly recommend that only photon energies above 10 keV be used, since

the code has no capability to deal with spectral lines.

To avoid generation of (unphysical) negative flux values, all the photon fluxes must be

positive and at least equal to the specified 1-σ uncertainty. The code uses only data points

up to (but not including) the energy channel which first violates this criterion. The other

data points are automatically neglected.
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1.3. Output file

The software provides one output file containing three arrays and one string, stored in

structure form in the datastruct structure. In the following a brief description of the four

structure-type variables is given.

Tag 1 Name : STRIP

Type : double Array[Ne, N + 2]

where Ne is the number of electron energy points and N the number of regularized solutions

for the creation of the confidence strip. The array contains the electron energies and each

realization of the solution Fλ in the following format:

datastruct.strip[*,0] = a vector of Ne elements containing the electron energies

datastruct.strip[*,1] = a vector of Ne elements containing the original

(unperturbed) solution Fλ at the specified energies

datastruct.strip[*,2:N+1] = array containing N different electron fluxes Fλ, at the

specified energies, produced by randomly perturbing the

data in inputfile

Tag 2 Name : RESIDUALS

Type : double Array[Nph, 6]

where Nph is the number of photon energy points. The array contains each realization of the

original (unperturbed) solution Fλ. The data is in six columns, with each row arranged as

follows:

datastruct.residuals[*,0] = Photon energy used (defined by photon energy array and

optional keyword photon bin position value - see below)

datastruct.residuals[*,1] = Photon flux value (from the input file)

datastruct.residuals[*,2] = Uncertainty in photon flux value (from the input file)

datastruct.residuals[*,3] = Photon flux corresponding to the recovered Fλ array

datastruct.residuals[*,4] = Residual photon flux (actual - recovered)

datastruct.residuals[*,5] = Cumulative residual, defined as in Eq. (7)

Note that Eq. (7) can be used as a measure of residual clustering; for an acceptable fit to the

data, |Sλ
k | should be less than n/

√
k, where n is the number of allowed standard deviations

(n = 3 is used in the code to drive the solution to an acceptable solution).
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Tag 3 Name : RESOLUTION

Type : double Array[M , 2]

where M is the number of resolution intervals. The array contains two columns representing

sampled energy resolution values as follows:

datastruct.resolution[*,0] = resolution bar center (
√

Elow ∗ Ehigh)

datastruct.resolution[*,1] = resolution bar width (Ehigh − Elow)

If two Fλ values are distant by more than the energy resolution, then they can be realistically

treated as independent; if they fall within the energy resolution they should be treated as

dependent to some degree. The number of resolution intervals (M) is determined by the

code (it cannot be specified by the user), and so the number of rows in this array (typically

10-20) is determined internally.

Tag 4 Name : INFORMATION

Type : string outputfile.info

The string is the pathname of an additional text file containing various technical pieces of

information, all textually labeled.

The graphical routine included in the software allows to produce also five postscript files

representing the input photon spectrum, the regularized solution, the confidence strip with

the resolution bars superimposed and two plots for the residuals.

1.4. Keywords

The setup of the software is performed by fixing the keywords of hsi regularized inversion.pro.

The keywords are:

• photon bin position : fractional location within photon energy bin to use. Range is [0,1]

with 0 = low end, 0.5 = mid-point, 1 = upper end, etc. The default is 0.5. NOTE: If

the routine determines that logarithmic data sampling is to be used, this parameter is

ignored, and the geometric mean bin energy is used by default.

• el energy max factor : the maximum electron energy (in units of the maximum pho-

ton energy provided) in the returned electron energy spectrum array (i.e., Emax =

el energy max factor ∗ εmax). Must be in the range [1,5]; the default is 2. The mini-

mum sampled electron energy is always equal to the minimum sampled photon energy.
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• electron bin : width (keV) of the energy bins in the returned electron flux array. Values

are returned at values spaced by this quantity. Default = 1.

• lambda multiplier : factor by which the user wishes to increase or decrease the value

of the smoothing parameter used in the algorithm. It must be non-negative and in the

range [1.e-2,1.e2].

lambda multiplier > 1 implies a smoother solution and worse residuals;

lambda multiplier < 1 implies a more unstable solution and better residuals.

The default value, which is STRONGLY recommended, is 1. We cannot emphasize

strongly enough the desirability of using the default value lambda multiplier=1. The

value of the smoothing parameter lambda is determined through a rigorous procedure,

and using other values of lambda usually results in highly undesirable features in the

solution and/or the photon residuals. Nevertheless, we understand that users may wish

to vary this parameter in order to explore the effects of such a variation. Attempts to

use a value of lambda multiplier outside the range [0.5,2] generates an appropriately

warning message.

• crosssection : a text string containing one of possible choices for the cross-section

Q(ε, E):

‘Kramers’ = Q ∼ 1
εE

. Simple analytic form of the electron-proton

bremsstrahlung cross-section. Not accurate, primarily

for comparison with analytic results;

‘Bethe-Heitler’ = Q ∼ 1
εE

ln(1+
√

1− ε
E

)

ln(1−
√

1− ε
E

)
. More accurate non relativistic

analytic form (Koch & Motz 1959);

‘Bethe-Heitler-Elwert’ = the Bethe-Heitler form with the Elwert collisional

correction term applied (Johns & Lin 1992)

(Johns & Lin 1992, a);

‘Cross3BN’ = fully relativistic, solid-angle-averaged, cross-section

(Koch & Motz 1959). Includes the Elwert collisional

correction factor. Used as default.

‘Haug’ = a functional fit to the Cross3BN relativistic cross

section. Includes the Elwert collisional correction term

(Haug 1997).

‘Cross3BNee’ = Cross3BN plus the term due to electron-electron

bremsstrahlung (Haug 1998).
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‘Anisotropy’ = fully angle-dependent electron-proton cross-section

(Gluckstern & Hull 1953; Massone et al. 2004). If this cross

section is chosen, keywords viewingangle and spreadangle

should also be specified.

The default is ‘Cross3BN’. Although the selection ‘Anisotropy’ is valid, we caution

the user that use of this cross-section increases the computational time considerably,

since it entails not only a more complicated form of cross-section, but also the need

for significant trigonometrical calculation. The same caution applies to addition of the

electron-electron bremsstrahlung term through use of ‘Cross3BNee’. Unless photon en-

ergies significantly above 100 keV are used, the results for ‘Cross3BN’ and ‘Cross3BNee’

are very similar.

• viewingangle : the angle between the mean electron propagation vector and the line

of sight to the observer (in degrees between 0 and 180). Ignored unless crosssec-

tion=‘Anisotropy’ is chosen. Default is 180 degrees.

• spreadangle : half-angle of the cone within which the electron velocities are (uniformly)

distributed (in degrees between 0 and 180). Ignored unless crosssection=‘Anisotropy’ is

chosen. Default is 180 degrees. Note that spreadangle=180 corresponds to an isotropic

distribution.

• Z : value of the root-mean-square atomic number of the target. Range = [1,2]. Default

= 1.2

• confidencestrip : number of realizations of the regularized solution to be determined.

Each realization is produced by randomly perturbing the data in inputfile using the

noise levels specified therein. Used to construct a ‘set’ of solutions in order to estimate

the uncertainty in the recovered solution. Default = 10, maximum = 50. Setting

confidencestrip = 0 or 1 produces a single solution.

1.5. Warnings

Warnings apply to two different situations:

• For all keywords: if a keyword is set to a forbidden value, the warning message is

(example)

WARNING : Invalid value for the keyword PHOTON BIN POSITION

PHOTON BIN POSITION must be in the interval [0,1]

PHOTON BIN POSITION set to default (=0.5)
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• For the keyword lambda multiplier: if the keyword is set to a value outside the range

[0.5,2], the warning message is

WARNING : LAMBDA MULTIPLIER =1 is STRONGLY recommended

2. Graphical routine

The graphical routine ‘reg ge plot.pro’ allows the user to produce plots of the results both

on the screen and in hardcopy. The calling sequence is :

reg ge plot, outputfile, hard=hard

where outputfile is the name of the output file (with data stored in structure form) provided

by the software and hard is a keyword (default=0) whose value must be set to 1 in order to

save the plots in postscript format. If hard=1, the outputs of the routine are:

1. a plot containing the photon spectrum (outputfile.photons.ps);

2. a plot containing the mean electron spectrum (outputfile.fbar.ps);

3. a plot containing the confidence strip with the resolution bars superimposed (output-

file.strip.ps);

4. a plot containing the original photon spectrum with the photon spectrum corresponding

to the regularized mean electron spectrum (upper panel) and the normalized residuals

(lower panel) (outputfile.residuals.ps);

5. a plot containing the histogram of the normalized residuals frequencies (upper panel)

and the cumulative residuals (lower panel) (outputfile.cumulative.ps).

3. The ‘reg ge inversion.pro’ routine

The routine ‘reg ge inversion.pro’ is an example routine showing how the user can run

the software by simply specifying input and output filenames.
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