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These notes briefly summarize some ideas related to the production and trans-
ter of continuum radiation at radio wavelengths. By continuum radiation I mean
broadband radiation (Av/ir > 1) which varies continuonsly and gradually with fre-
quency v. By contrast, emission or absorption in spectral lines is such that the width
of line is much less than the radio frequency at which it is emitted (or absorbed):
Awy, < v, 1 begin with some definitions and concepts useful to radiative transfer,
set. up the transfer equation, and give the formal solution. T'll then discuss two
conunon emission mechanisms which produce continuum radiation at radio wave-
lengths — bremsstrablung and gyromagnetic radiation. T'll conclude by mentioning
some effects of the background medivm on radiation and its transfer. Tor those
interested in pursuing the subject in more detail, T suggest reading the excellent
itroductory book Radiative Processes in Astrophysies by Rybicki & Lightman or
Radiation Processes in Plasmas by Stix.

1 Some Useful Definitions and Concepts

1.1 Specific Intensity, Brightness, Flux Density

For the moment, think of radiation as propagating along rays. The radiation flux
is a measure of radiative encrgy carried by all rays passing through a given arca.
Consider a small area dA perpendicular (normal) to a given ray (Fig. 1). Now
consider all rays passing through dA whose direction is within a solid angle dS2 of
the given ray.

Hay

e e




The energy crossing dAd in a time dt and a frequency range dis is defined b
£ Y &

ali = I, dA dt d§1 dv

where [, is the specific intensity or brightness. The units of I, are energy/{area -
time - solid-angle - frequency), or ergs em™? ™! ster™! Ha~ 1.

Return to the small area dA. The flux of radiation through d.A per second per Hz
from a solid angle df2 is the specific intensity times the solid angle d£2, but reduced
by cos @ where ¢ is the angle between the normal of d4 and the ray directed along
d? (Fig. 2). So we have dF, = [, cos8df2. Integrating over all directions (i.e., all
solid angle) we have

I, = /Iu cosf dSl.

Note that il the radiation is isotropic (the same in all directions), the net flux of
radiation though dA is zero. ‘
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Now cousider a distant source observed by a radio telescope. Il the source is
resolved, we have a measure of the radiation Hux per resolution clement. The resolu-
tion clement, determined by the properties of the instrument, subtends a solid angle
1,. We often call 2, the “beam” in radio astronomy. Then, because F, = I,£1,,
I, = F, /€. We call this the flux density. It represenis an imperfect measure of
the specific intensity of the source — imperfect because we are limited by the finite
angular resolution {1, of our instrument. At radio wavelengths, we measure flux in
units of Janskys, in honor of Karl Jansky, the Bell Labs engineer that first discovered
radio signals of cosmic origin: 1 Jy = 107 ergs cmn™? §7! Hz! = 1073 W 2
Hz ! Hence, the unit of flux density is commonly Jy/beam.



1.2 Emission and Absorption Coefficients

It is important to point out that rays traveling in free space have a constant specific
intensity. In other words, df,/ds = 0. Therefore only emission and absorption of
the ray can change the specific intensity.

The emission coefficiennt is defined as the energy emitted per unit time per unit
solid angle per unit volume per unit frequency: dF = j, dV dS? dt dv. T therefore
has units of ergs cm™ 571 ster™! Hz™%. Tt is easy to sce that for rays traveling a
distance ds, a beam of cross section dA travels through a volume dV = dA ds and
the intensity added to the beam is therefore df, = j, ds.

The beam looses energy by absorption as it travels a distance ds. The absorp-
tion coefficicnt is defined by dl, = —«. I, ds where the convention is o, > { for
energy removed from the beam. To see this phenomenologically, consider a random
distribution of absorbing particles with a density n in a some volume. Suppose the
effective absorbing area’ (cross section) of each particle is o, cm?. For an area dA
and a distance ds, the volume is dA ds, the number of absorbing particles is n d4 d5,
and the total absorbing area is dA.pr = no, dA ds. Then the energy removed from
the beam by the absorbers ig

£, dAesy d) dt dv = I, (no,dAds) d§1 dt dv.

So, dI, = —no, I, ds and we identify «, = no, in the present case.

dQ

{a)

a4

{h}

For the purposes of this simple discussion, I have ignored scattering processes,
which can scatter radiation into or out of the beam. I have aigo ignored stimulated

UPhis treatment is only valid if the linear size of the absorbing particles is much less than the
distance between them, a condition almost always met in astrophysical applications.
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emission, which can be considered a “negative absorption” because it, like normal
absorption, depends on the specific intensity.

2 Radiative Transfer

2.1 The Radiative Transfer Equation

We now have all the pieces to write down an equation which describes the change
in specific intensity along a ray:
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d
dl, = —al,ds + juds —
ds

= —a,l, + i

This is the radiative transfer equation. It describes the macroscopic behavior of
radiation in an emitting and absorbing medium, hiding all of the microscopic physics
in «, and 7, (which I'll get to below). It is useful to recast the equation in a more
intuitive form using the optical depth and the source function. The optical depth
Ty is defined by dr, = a,ds, or

(8) = (/: o (s )ds'.
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Note that 7, is dimensionless. The source function is defined as the ratio of the
emission and absorption coefficients: S, = j,/a,. We can then rewrite the transfer
equation as

dl,
g = =1, + 5.

The formal solution to the transfer equation is

Tv '
L{(r) = L(0)e™™ + /0 TS, (7)) dr

Consider the simple case of a constant source function S,. Then the solution becomes

Iu('ry) = IV(O)E_T“ - SV(}. - G_Tu)

It’s easy to see that as 1, becomes large, I, aproaches S,,. More generally, if I, > S,,,
dl,/dr, < 0 and I, decreases along the the ray; if I, < S,, dI,/dr, > 0 and I,
tends to increase along the the ray. Hence, the specific intesity always approaches
the source function given sufficiently large ,. We refer to media where 1, > 1 as
being optically thick and those where 7, <« 1 as being optically thin.



2.2 Thermal Radiation and Brightness Temperature

Before continuing, it’s worth a brief aside to discuss thermal radiation. Thermal
radiation, sometimes calied blackbody radiation when it is optically thick, is in
thermal equilibrium. Consider an enclosure which is held at some temperature T
No radiation is let in or out of the enclosure. After some time, the interior of the
enclosure is filled with radiation in thermal equilibrium with the walls. Suppose we
made a small hole in the enclosure and measured the radiation without disturbing
the equilibrium. It so happens that the specific intensity is fully specified under
these conditions by a universal function of 7" and v; i.e., I, = B,(T). The function
B, (T} is called the Planck function. A derivation of the Planck function, based
on thermodynamic and quantum mechanical arguments, can be found in Rybicki &
Lightman. It is given by

. 2h® fc?
By(T) = kKT |
where A is Planck’s constant and & is Boltzmann’s constant. Thermodynamic ar-
guments also establish that S, = B, so that j, = . B, (T) (Kirchhoff’s Law).
At radio wavelengths the frequency of the radiation is such that hy < ET. We
can therefore expand the exponential in the Planck function: e™/*T — 1 ~ huv/kT.
Therefore, to a high degree of precision we have the simple expression referred to as
the Rayleigh-Jeans Law:
202

Given the simplicity of the expression for the specific intensity in the Rayleigh-
Jeans regime, it is useful to characterize the brightness at a particular frequency by
the temperature of the blackbody having the same brightness at that frequency. We
refer to this temperature as the brightness temperature Tg; it is defined through the
expression

202
IV - BV(TB) — ?RTB

In addition $o having the advantage of being related to the physical properties of
the source of radiation, it also has the advantage of simple units (Kelvin, as opposed
to ergs cm™2 s—1 ster™! Hz~1). Given the relationship between I, and Tg, S, and
T, we can rewrite the transfer equation:

di'
dr,
which, when T is constant, has the solution

=T +T

Tp=T{1—e"™)



in the absence of background emission. Note that when the source is optically thick
Tp = T; when the source is optically thin the exponential can be expanded and we
have Ty = 7,7T.

OBSERVER

3 Radio Continuum Emission Mechanisms

3.1 Preliminaries

Continuumn radiation is produced by accelerating charge. To see this in detail is far
beyond the scope of this lecture, but one can get an intuitive inkling of why this
might be by refering to the figure. It shows the electric field of a particle which has
noved uniformly in the - direction until, at time £ = 0 and location o = 0, it is
stopped abruptly. Because of the finite speed of light, points far [rom the particle
have not vet received the news that it has stopped and the electric feld is that of
the moving particle. But inside the radius 7 = cf, the ficld is that of the motionless
particle. Hence, a transverse disturbance has formed which moves out from the
particle at light speed.




3.3 Gyromagnetic Radiation

Collisions between electrons and ions is not the only way to produce continuum
radio radiation. If a magnetic field is present in a plasma the clectrons experience
the Lorentz force:
F= Ev xB or mer = Ei‘ x B
¢ ¢

Here e is the charge of an electron, ¢ is the speed of light, v is the electron velocity
and B is the magnetic field. Suppose we have a volume permeated by a uniform
magunetic fleld in the Z direction: B = (0,0, B,). Consider an electron moving at a
constant speed perpendicular to the magnetic field. If its initial velocity vector is
v = (0, vy, v,) and its initial position is v = {26, Yo, 7o) We can write an equation of
motion for each coordinate and solve it:

w(t) = wo -+ Ei(l — 05 Qet)
Szc
y(t) =3 + %J sin .t
M4

The clectron moves in a helical path; if v, = 0 it moves in a circular path a fre-
quency §2.. We refer to 2, = el3/mec as the electron gyrofrequency. Similarly, a
positively charged particle also has a circular motion in a magnetic field, but in the
opposite sense of an electron. Furthermore, the gyrofrequency of an ion is given by



A detailed treatment of the nonrelativistic (v < ¢) case of a charge ¢ with accel-
eration v yields the Larmor formula for the power emitted by a single accelerating
particle of charge e into solid angle df:

ar g2v?

Q208
Here © is the angle relative to the vector along which the particle is accelerated.
Note that the power radiated is proportional to {chargexacceleration)?, that the
radiation pattern is dipolar (the sin? © pattern), and that the emission is peaked in
the direction perpendicular to the acceleration vector.

The relativistic case (i.e., charged particles moving at a significant fraction of
light speed) requires a thorough grounding in the theory of special relativity. The
relativistic counterpart to the above equation for the angular distribution of the
power emitied is

sin? ©

P ¢ (YPaf+al)

d  Amcd (1 - Bp)t
where o and g is the acceleration perpendicular and parallel to the velocity vector
of the charged particle, respectively, and v = 1/4/1 ~ (v/c)? (the Lorentz factor).
The chief effect of relativistic particle speeds is beaming. The figure shows the special
cases of beaming for acceleration paraliel to or perpendicular to the instantaneous
veiocity of the charged particle.

For an ensemble of charged particles, the power emitted has the same form as

the single particle case under the dipole approximation. However, rather than v,
we have d? where d= ¥, eir; is the dipole moment of the ensembie.

.9
sin* ©

3.2 DBremsstrahlung or Free-Free Radiation

Bremsstrahlung is a German word meaning “braking radiation”. The term free-free
radiation is also often used, referring to the fact that unbound charged particles are
involved. Specifically, bremsstrahlung radiation is due to the interaction between
ions and electrons. When an electron passes near an ion, both particles experience
a deflection due to the Coulomb force. The deflection of the particle trajectories is
an acceleration and the particles therefore radiate. The deflection is inversely pro-
portional to the mass of the particles and is therefore much larger for electrons than
ions. Hence electrons are the main emitters in bremstrahlung and the contribution
of ions may be neglected — that is, one can simply treat the problem in terms of the
deflection of the electron by the electric field of the ion.



The way the calculation proceeds is as follows: 1) the radiation from a single electron
moving past an ion with an impact parameter b is calculated; 2) the contributions
from all electrons passing all ions over all impact parameters are then summed. This
means summing over all electron velocities in a distribution and all (relevant) impact
parameters. The range of impact parameter b over which one integrates is a little
tricky. The minimum impact parameter by, depends on some quantim mechanical
considerations, and the maximum impact parameter by, is where the effect of the
ionic electric field becomes negligible. The most important case encountered in
astrophysics is thermal plasma, where the velocity distribution of the electrons and
ions is Maxwellian. In this case, the probablility of a particle having a speed v in
the range dv is

— 2 |«
dP o v2e™ ™V T gy,

and one calculates the thermal bremsstrahlung or thermal free-free emission by
summing (integrating) over the contributions of all particles in the Maxwellian dis-
tribution function.

The (angle-integrated) emissivity resulting from electron-ions collisions in a ther-
mal distibution of particles is:

i 2w (_2_”__

v 3kme
where e;ff = 47rj;ff . e 18 the electron number density, n; is the ion number density,
and Z is the ion charge. gyp(»,T) is called the Gaunt factor, a slowly varying
function of T and v. It incorporates the range of impact parameters important to
the problem:

1/2
- 3mecs ) / ZZneninE./chhz//kTgff(U’ T)

955 T) = —ffln(fmaz)

binin
For thermal free-free emission, we can use Kirchhoff’s Law to derive the absorp-
tion coefficient. Doing so, one obtains

4e5 ; 2m \1/2 .
5= il ~1/252, . =301 . kT
= Bmhc(Bkm) T2 neniv ™" (1~ ™ g (T, 1)

Note that the exponentials in both expressions can be expanded in the Rayleigh-
Jeans (radio) regime. For the absorption coeflicient we get the much simpler expres-
sion:

off = 0.0187 22 ngniv2gs (T, v)

It is also worth noting that the source function is simply the Plankian. Hence
the frequency dependence of the source function is v? in the radio regime.



£ = ZeB/myc. A proton is almost 2000 times more massive than an electron. It
gyrofrequency is therefore almost 2000 times smaller than that of an electron in a
given magnetic field.

Because a particle in a magnetic field moves in a circular trajectory (or a helical
trajectory if it has a velocity component v;) the electron is continuously accel-
erated. It therefore emits photons. The general expressions for the emission and
absorption coefficients of gyromagnetic radiation are very complicated. Luckily, var-
ious approximations can be made when the electrons involved are non-relativistic or
ultra-relativistic. We refer to radiation produced by electron gyration in a magnetic
field in the former regime as gyroresonance or cyclotron radiation; in the high energy
regime we refer to synchrotron radiation; and in the intermediate regime we refer to
gyrosynchrotron radiation.

3.3.1 Gyroresonance or Cyclotron Radiation

When the electron moves in a magnetic field at non-relativistic speeds (v < ¢) it
emits radiation at discrete frequencies which are low harmonics of the gyrofrequency.
In other words, the cyclic frequency of the radiation emitted is at svp where 5 =
1,2,3,... and vg = §1/27. The figure shows the radiation pattern of various low
harmonicg of the {cyclic) gyrofrequency vg.

Because gyroresonance involves low-energy electrons, it typically involves a ther-
mal distribution of electrons. An example of thermal gyroresonance is found on the
Sun. Strong thermal gyroresonance emission is often seen above sunspots where the
magnetic field is strong. The approximate expression for the the thermal gyroreso-
nance absorption coefficient is:

ar
Q:I/

ek ﬁ (5/2)% (sin 0)?*72(1 + cos® 6) 5253 oy [_ (1— SVB/V)Q]
¢ v sl cosd e P P2 cos? 8§

Here vy, = Vetng fmm, is the electron plasma. frequency (see below) and f, =
2kT /m.c?. Since the electron distribution function is thermal, one can again relate
the absorption coefficient to the emission coefficient through Kirchhoff’s Law.

3.3.2 Gyrosynchrotron Radiation

When the emitting electrons are mildly relativistic, so that their kinetic energy is
comparable to their rest mass (energies of order 100s of keV to a few MeV), and
the Lorentz factor «v is of order a few, the electrons emit at higher harmonics of the
electron gyrofrequency — somewhere in the range of s ~ 10 — 100. The emission is
no longer characterized by discrete harmonics — the harmonics broaden and merge
with increasing energy so that a continuum is formed (Fig.?).
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Horrifying as of” is above, it is much worse for case of intermediate electron
energies. The emission and absorption coefficients cannot be written down in a con-
venient analytic form in this case. This is because they involve sums over many
harmonies of the gyrofrequency. For this reason detailed calculations of gyrosyn-
chrotron emission can be quite tedious and approximate forms are often used. Ex-
amples may be found in the review by Dulk (1985, Ann. Rev. Astron. Asirophys.,
23, 169).

Gyrosynchrotron emission is encountered on astrophysical objects where the
magnetic fleld is intermediate to strong: 10s to 100s of Gauss. Such magnetic field
strengths are commonly encountered on the Sun and active stars. The electron distri-
bution function may be thermal, in which case one refers to thermal gyrosynchrotron
radiation; or the distribution function may be nonthermal, in which case one refers
to nonthermal gyrosynchrotron radiation. The most common nonthermal electron
distribution encountered in practice is the power-law, where the number N(E} of
clectrons with energies between E and E + dE is given by N(EYdE = CE™%dE. §
is the spectral index of the electron energy distribution.

3.3.3 Synchrotron Radiation

When the emitting electrons are fully relativistic, v 3 1 and we refer to synchrotron
radiation. In this case, electrons emit a broadband continuum of radiation at high
harmonics (around s = +? of the gyrofrequency. Because relativistic electrons are
involved, the emission from a single electron is highly beamed with an angular width
of order 8 = 1 /7.

In the case of relativistic particle distributions, nonthermal distributions are the
rule. Mechanisms which heat plasmas in bulk to relativistic energies are not encoun-
tered in practice. Synchrotron emission from nonthermal (usually parameterized as
power-law) distributions are ubiquitous in astrophysics. The beautiful luminous ra-
dio lobes found in radio galaxies are due to emission by ultrarelativistic electrons
interacting with very weak magnetic fields (of order 10 microgauss). The absorption
coefficient for synchrotron radiation from a power-iaw distribution of electrons is
unpleasant but manageable:

WV \/ges( 3q )5/2C(Bsilla)(6+2}/zr(36+2)I‘(35+22)1/—(5+4)/2

Y 8ame \27rm3cd 12 12

where ¢ is the electron pitch angle, and the I's refer to the [ function. Note the
fairly simple dependence of the the absorption coefficient on frequency. The emission
coefficient is proportional to #(871/2 5o the source function depends on frequency

as Sy, = Jujay, x 572
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3.4 Other Mechanisms

Thermal bremstrahlung and synchrotron radiation are the continuum emission mech-
anisms most commonly encountered ai radio wavelengths in astrophysics. There
are many other mechanisms, though, which may be important for certain kinds of
sources. I'll mention two: plasma radiation and inverse Compton radiation.

I have already discussed gyromagnetic emission. Electrons oscillate in a magnetic
field and therefore emit directly into harmonics of the electron gyrofrequency. There
are other types of oscillations in astrophysical plasmas. One ig plasma oscillations,
or Langmuir waves, caused by the electric field between ions and electrons. The
frequency of oscillation is called the electron plasma frequency which was already
encountered above in the gyroresonance absorption coefficient: 1pe = /nec?/mme,
where n, is the electron number density). Electrostatic oscillations can be excited
in & plasma by a variety of mechanisms, including electron beams, shocks, and
anisotropies in the electron distribution function. Langmuir waves are longitudinal
waves {like sound waves} as opposed to electromagnetic waves which are transverse
waves, Unlike electromagnetic waves, electrostatic waves cannot exist in a vacuum —
they can only exist in a plasma. However, various mechanisms can convert electro-
static waves into electromagnetic waves. For example, a Langmuir wave scattering
off of an ifon can be converted into an electromagnetic wave with a frequency wpe;
or two Langmuir waves colliding head on can produce a photon with a frequency
Qpe. Since wye /27 =2 9000, /7, largish densities (say, 108 — 10%0 electrons per em?)
are required to produce plasma radiation at wavelengths accessible to an instrument
like the VLA {which offers frequency coverage from 300 MHz to 50 GHz). These
sorts of densities are only encountered in stellar atmospheres or exotic environments
like accretion disks around compact objects such as white dwarfs, neutron stars, and
black holes.

Another mechanism of interest — not strictly relevant to the production of radio
photons — involves photons scattering from free electrons. While the physical mech-
anism is the same, one often sees Thomson scattering, Compton scattering, and
inverse Compton scattering discussed in the literature depending on the energy of
the electrons or photons in question. Thomson scattering is the classical treatment
of scattering by free electrons; Compton scattering involves low-energy electrons
and high-energy photons; inverse Compton scattering involves low-energy photons
and energetic electrons. Many astrophysical source involve energetic electrons (e.g.,
AGNs), in which case inverse Compton scattering is relevant. The importance of
inverse Compton scattering is that it offers a mechanisin whereby energetic elec-
trons transfer energy to photons. In fact, the photon’s energy is increased by a
factor v%! For certain radio sources, inverse Compton scattering imposes a limit on
their brightness. The compact cores of AGNs are thought to be due to self-absorbed
(optically thick) synchrotron emission. Synchrotron emission is due to ultrarelativis-
tic electrons. When the energy density of photons becomes sufficiently high inverse
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Compton scattering becomes operative and degrades the energy of the very electrons
producing the background photons!

4 Modifications Due to the Presence of a Medium

In practice, radiation does not propagate in a true vacuum. Radiation propagating
from a distant source must traverse the interstellar medium, which contains contains
gas and dust; the interplanetary medium, which is composed of a tenuous plasma
moving away from the Sun at supersonic speeds (the solar wind); the Earth’s iono-
sphere, caused by the bombardment of the upper atmosphere by energetic photons
and particles from the Sun; and the Earth’s atmosphere which is dense and neutral.
All of these media affect radio waves in different ways and to varying degrees. In
many cases the plasma or gas through which the radiation propagates is so tenuous
that it has no discernible effect. But in other cases it does and it’s effects may be
parameterized in the refractive index of the medium, which we denote p,,. I will
simply write down the modified transfer equation:

4 (i) =-fys,

dr, \ p2 I
For an unmagnetized plasma, ju, = /1 — 12, /1% Note that for v < v, the refractive
index is imaginary and electromagnetic waves cannot propagate!

In a magnetized medium, p, has a more complicated form which depends on
the polarization of the electromagnetic wave. When the frequency of the wave
¥ 3P Vpe, VB, the effect of the medium is largely limited to Faraday rotation. Faraday
rotation of linearly polarized radiation is due to the fact that right- and left-hand cir-
cularly polarized modes which combine to form the linearly polarized component get
out of phase as they propagate through a rarefied and weakly magnetized medium.
As & result, the plane of the electric field vector rotates. Faraday is an important
observable at radio wavelengths.
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