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1 Introduction

These notes summarize the essentials of radio interferometry and Fourier synthesis
imaging. They are based on several sources, notably Synthesis Imaging in Radio
Astronomy, a collection of summer school lectures editied by Perley, Schwab, &
Bridle, and Interferometry and Synthesis in Radio AStronomy by Thompson, Moran,
& Swenson.

Radio interferometry dates back to the mid-1940s when the first radio interfero-
metric observations were performed on the Sun. McCready, Pawsey, & Payne-Scott
(1947) used a single antenna located on a high coastal cliff in Australia to point
east as the Sun rose. A fringe pattern was recorded from the interference between
the direct signal and that reflecting from the ocean surface below. This “sea inter-
ferometer” finds its analog at visible wavelengths in a Lloyd’s mirror. The paper
of McCready et al. is the first to note the Fourier transform relationship between
the quantity measured by an interferometer and the radio brightness distribution, a
relationship which forms the basis of all modern Fourier synthesis telescopes.

The remainder of these notes is devoted to outlining the principles and practice
of radio synthesis imaging, and to pointing out some of the difficulties and limi-
tations associated with using these techniques. In §2 I introduce the fundamental
relationship between the spatial coherence function and the sky brightness which
forms the basis of synthesis imaging. In §3, I show how interferometry exploits this
relationship in practice. In §4, I discuss image formation and reconstruction. In §51
point out several limiting factors, and in §6 I take up two special topics: mosaicing
and frequency synthesis.

2 Coherence and the van Cittert—Zernike Theorem

In general, an electromagnetic disturbance at a point r and time ¢ is described
by a vector field, E(r,t), which satisfies Maxwell’s equations. Although the field



varies rapidly and randomly in time, its fluctuations are ergodic in the sense that
time-averaged measurements of the field are well-defined and are similar for all such
measurements. We ignore the polarization properties of the electric field here and
treat it as a scalar for the remainder of the discussion.

We define a “signal” as the response of a probe to the radiation field. The
signal (r,¢) is proportional to E(r,t) and, ignoring constants of proportionality,
the intensity of the radiation I(r) can be measured as

I(r) = (v(r,t)v™(r, 1)),

where the asterisk denotes the complex conjugate.

Coherence theory, originally developed to descibe the phenomenon of interfer-
ence, is a statistical description of electromagnetic radiation. Coherence is a term
which refers to the degree of correlation between two measurements of the radiation
field. The mutual coherence function is defined by

I{rq,ro,7) = (w{ry, )" (re, t+ 7)),

which is nothing more than the correlation function between random signals mea-
sured at two points ry and rg at times differing by 7. The degree of coherence is
given by

 D(ry,ra,7)
TR D) = G e

The radiation is said to be coherent if |v] = 1, incoherent if |y| = 0, and partially
coherent if |y| lies somewhere in between. If the points ry and rg coincide, I'(r, 1, 7)
is called the autocorrelation function. By the Wiener-Khinchin Theorem, the auto-
correlation function is the Fourier transform of the power spectrum of the radiation
field. If, on the other hand, the mutual coherence function is measured with 7 = 0,
then I'(ry, re, 0) is called the spatial coherence function. The spatial coherence of
two points illuminated by a quasi-monchromatic source of incoherent radiation is
given by the van Cittert—Zernike theorem, which dates back to the 1930s. It forms
the basis of Fourier synthesis imaging.

Two assumptions are required: 1) that the source is far enough away that they
are, for all intents and purposes, pasted onto the surface of the celestial sphere — that
is, we have no hope of inferring anything about the depth of the emission and must
be content with surface brightness. 2) That the emission is spatially incoherent
at the source (spatial coherence at (r1,rz) acquired from propagation). The van
Cittert—Zernike Theorem then states that the spatial coherence function is related
to the sky brightness as follows:



I(r1,r2,0) = /I(s)e%“is'(rl*fz)/cdg_

Here s is a unit vector directed toward the source, I(s) is the intensity, and df an
element of solid angle. Note that a measurement of the spatial coherence function
depends only on the relative difference between ry and ra.

3 Interferometry in Practice

3.1 The Response of an Interferometer

The basic measuring device in synthesis mapping is the interferometer. An interfer-
ometer is composed of two antennas (presumed identical} separated by a distance b.
Let the two antennas point toward a distant radio source in a direction indicated by
the unit vector s. In general, the plane wave incident on the interferometer arrives
at one antenna first, and then at the other. The time delay between the two is
7, = b -s/c and is called the geometrical delay. The signals from the antennas pass
through amplifiers and filters which select the frequency of interest with bandwidth
A, The voltage signal responses produced by each antenna are muitiplied together
and time-averaged in a device called a correlator. That is, for input voltages from the
two antennas, Vi(t) and Va(¢), the correlator output is proportional to {Vi{t)Va(2)).
Representing the two voltage signals as

Vi(t) = vy cos 2ru(t — 75); Va(t) = vq cos2mut

the correlator output is then

r(7g) = V102 CO8 27T,

Note that compensation occurs for the geometrical delay before the correlation is
performed. The result is the interferometer fringe pattern. The correlator output
can be recast in terms of the radio brightness integrated over the sky. Let I(s) be the
sky brightness in the direction s at the frequency ». If A(s) is the effective collecting
area of an antenna in direction s, the signal power received by each antenna over
a bandwidth Ar in a solid angle clement dY is A(s)I(s}Avd. So the correlator
signal per solid angle element d(? is

dr = A(s)I(s)AvdQ) cos2nyTy,

Integrating over the celestial sphere, we obtain
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In practice, the angular response of the antenna elements falls rapidly to small
values outside of a narrow angular width defined by their diameter. Tt is usually
more convenient to refer measurements to a reference position s,, commonly referred
to as the phase tracking center. Then we have s = s, 4 ¢ and
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Defining the complex visibility as

V = V]t = / AoV (s)e~2rivboregn, (1)

where A'(o) = A(o)}/Ao is the normalized antenna beam pattern, we obtain

7= A AV cos(-2—~7~T~~I£::3~;~SE — qf}y). (2)

It is now clear that an interferometer is a machine for measuring the visibility, which
is nothing more than the spatial coherence function with a different normalization.
By measuring the amplitude and phase of the fringe pattern in eqn. (3), the ampli-
tude and phase of the visibilty is determined after application of suitable calibration.
Eqn.(2) may then be inverted.

3.2 Coordinate System for Imaging

In order to make use of eqn.(2) in practice, a convenient coordinate system must be
introduced. A commonly used (but not universal) system is one where the baseline
vector is specified in a coordinate system by (w,v,w) where w is chosen toward
the phase tracking center {s,), u is toward the east and v toward the north. The
coordinates (u, v, w) are measured in wavelengths. Positions on the sky are defined
in { and m, the direction cosines measured with respect to the u and v axes. Thus a
sysnthesized image in the { — m plane represents a projection of the celestial sphere
onto a plane tangent to the I — m origin. In these coordinates we have

vb-s vb -8,
= ul + vm + wn,

=w
C
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so that eqn.(2) can be rewritten as

dsd

dlidm
e

This reduces to a two-dimensional Fourier transform relation when |l| and |m| are
sufficiently small, since

V(u, U, ’w) = / /A’(l, m)I(Z,m)e“gmft‘&“m*“’(m*l)]

w(Vl—1%—m?2—-1)~ ——12—(12 + m)w = 0.

Then eqn.(4) reduces to

Viu,v) = f/A’(l,m)I(l,m)e*zm(ul“’m)dl dm. (4)

This can be inverted to give

A, mYI(l,m) = //V(u,v)ezm(ul'“"m)du dv. (5)

To sumunarize, an interferometer is a device for measuring the amplitude and
phase of the complex visbility function, a function which is nothing more than
the spatial coherence function {albeit with a different normalization). By the van
Cittert—Zernike theorem, the visibility is related to the sky brightness. If the mea-
surement of the visibility function is confined to a plane, or if only a small region
of the sky is considered, V' (u,v) and I(l,m) reduce to a Fourier transform pair, as
given by eqns. 5 & 6.

4 Synthesis Imaging

4.1 Image Formation

The fundamental result of the previous section is that, under a not-too-burdensome
variety of contraints and assumptions, there is a Fourier transform relationship be-
tween the sky brightness, I, and the visibility function V. Furthermore, it has been
shown that an interferometer can be used to measure the visibiity fanction.

I will avoid a detailed discussion of how visibility measurements are calibrated,
saying only that instrumental parameters are generally determined by observing
simple sources (point sources) of known flux density and position, although there
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are exceptions. For cosmic sources, V' is usually calibrated in units of Janskys (1 Jy
= 10"% W m~2 Hz~! and, in the image domain, 7 has units of flux density/beam
volume (flux density per unit of solid angle). In the case of solar observations, V' is
usually calibrated in units of solar flux units (1 sfu = 10 Jy).

In practice, antenna arrays are used to measure the visibility function on many
basclines and therefore, at many spatial frequencies. However, since one is always
limited to a finite number of antennas and a finite amount of time over which to
make the observation, there will always be gaps or holes in the measurement of the
visibility function. Furthermore, measured visibilities are always corrupted by noise
(e.g., thermal noise due to the receivers or, in the case of the Sun, due to the source
itself). I designate the noisy visibility measurement by V’(u,v). The set of spatial
frequencies at which visibility measurements were made can be written in terms of
a sampling function S(u, v). Then eqn. {6) can be recast in the form

(1, m) = / f S{u, )V (1, 0) 2T gy g, (6)

where T7(1,m) is referred to as the “dirty image”. Note that I have absorbed the
antenna response A(l, m) into I”7(1, m). Giving the sampling function a more explicit
form,

A
S, v) = Z d{u — ug, v — vy,
k=1
the sampled visibility function can then be written

M
VS (u, v} = Z Sl — ug, v — vp)V'{u,v).
k=1

Letting F denote the (inverse) Fourier transform operator. FKqn. (7) can then be
written

IP =F(VS) = F(SV) = F(S)*x F(V) = F(S) « I’

where * denotes a convolution. Hence the dirty image is the convolution of the
inverse Fourier transform of the sampling function with the “true” (albeit noise
corrupted) brightness distribution; F(S) is commonly referred to as the “dirty beam”
or the point spread function since, when the source is a point of unit amplitude at
the phase tracking center, the visibility function is unity everywhere.

In analogy to the sampling function, a weighting function can be written as



M
Wu,v) = Z Ty Dypd (v — g, v — Vi),
k=1

and the weighted and sampled visibililty function V" is then

M
VW (u,v) = > TpDpb(u— up, v — vp) V' (u, v).
k=1

I have ignored a possible instrumental weighting of the visibility data and only con-
sider weighting which can be controlled during image formation. Both the density
weight Dy and the tapering function T}, are used to control the shape of the dirty
beam, which is now written B = F(W). It is common to use a simple Gaussian
for the tapering function. Iis purpose is to smoothly weight down the highest spa-
tial frequencies in order to suppress smaliscale sidelobes, although high-resolution
information is also supressed as a resulf.

The density weighting is used to emphasize or de-emphasize one part of the sam-
pling function over another. The need for this is as follows: many synthesis arrays
sample many more short baselines than long baselines. Short baselines therefore
receive relatively more weight than long baselines in forming the image. It is often
desirable to have all parts of the sampled visibility function contribute uniformly
to TP (the best angular resolution is achieved in this way). This may be achieved
by letting Dy = 1/Ns(k), where Ny is the number of visibility samples within a
specified area around (ug, vi). In densely sampled parts of the visibility domain, the
data are weighted down relative to sparsely sampled regions. This kind of weighting
is called uniform weighting. The opposite extreme is no density-based weighting
(D), = 1), which is called natural weighting. Uniform weighting yields higher angu-
lar resolution and, often, a more pleasing dirty beam. In contrast, natural weighting
vields a broader dirty beam, but higher sensitivity since all data receive full weight.
Optimum weighting usually lies somewhere between these two extremes.

The dirty image is commonly calculated in one of two ways, both involving a
discrete representation of I”(u,v). A discrete representation involves evaluating
IP(l,m) on a uniform grid of pixels. One method is to compute the “direct Fourier
transform” at each grid point of an N x N matrix by evaluation of the sum

M
_1_ Z VI(’UI]C, ,Uk)ele(ukl+vkm)’
M k=1

where M is the number of visibilities. Obviously, this method is impractical if either
N or M becomes large. The other method - and by far the most common - is
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to interpolate the visibility measurements onto a regular grid so the Fast Fourier
Transform (FFT) algorithm can be used. The process of interpolating the data
onto a uniform grid is referred to as gridding the data. It involves convolving the
weighted, sampled data with some suitable function €. The convolution is then
resampled on a uniform grid. Let the resampling function be written

R{u,v) = Z Z (7 — u/Au, k — vfAv),

=0 k=-oc0

where Ay and Av define the separation between grid points (R is Bracewell’s “sha”
function). The convolution of C with the weighted visibility is written C'x VW and
resampling is written as

VE = RC* VYY) = R(Cx (WV).

Since V¥ is sampled on a regular grid, FV# can be computed using the FFT algo-
rithm. From this we obtain an estimate of /%:

IP = PR+ [(FO)FVY)] = FR+ [(FCO)FW « FV')].

Appropriate normalization is usually required, and correction for the convolution
function C - that is, I'” is divided by FC. The dirty beam is computed in a similar
fashion, with

BP = FR+ [(FC)(FW)].

Because of the presence of the resampling function R, some care must be exer-
cised in choosing the convolution function €. The reason is that by resampling the
visibility data, one effectively makes 7 a periodic function of [ and m with a period
1/Aw in I and 1/Av in m. If FC does not fall to zero sufficiently rapidly outside
the primary field of view (1/Aw, 1/Aw), parts of the sky brightness that lie outside
of primary field of view are aliased back into the field of view.

4.2 Image Reconstruction

The general problem of image reconstruction is summarized by the measurement
equation

I°=BxI+n



where IP is the dirty map, I is the ideal or “true” image, B represents the in-
strumental point spread function or dirty beam, and n represents additive noise. As
before, » indicates a convolution. Image reconstruction involves recovering I through
various deconvolution schemes,

Two aspects of the measurement equation make the process of image deconvo-
fution a difficult one. First, there is additive noise. One might suppose that one
could simply FFourier transform the measurement equation, divide both sides by the
Fourier transforin of B, and then compute the inverse Fourler transform to recover E.
For filled apertures, such linear techniques are in fact used, although in the present
of noise, division of the Fourier transform of the measurement equation amplifies
the noise and introduces high-frequency artefacts into [. Even so, linear deconvo-
lution techniques have been developed (e.g., Wiener filtering), which optimize the
deconvolution in the presence of noise.

No such techniques can be used to invert the measurement equation for synthesis
mapping because B is singular. In other words, the Fourier transform of B, which
represents the sampling function, has many spasial frequencies where no measure-
ment of the visibility function was made. The principle solution assumes that the
amplitude of the visibility function is zero at all unsampled points. Let z be a distri-
bution of brightness which contains only the unmeasured spatial frequencies; then
B xz = 0. If Tis a solution of the measurement equation, then so too is I+az. Many
solutions therefore exist to the measurement equation. The measurement equation
is formally “ill-posed” and nonlinear deconvolution technigques must be employed.

Deconvolution in these circumstances involves estimating the visibilty function
at those spatial frequencies where it was not measured. Of the many solutions I+ az
possible, the trick is to identify that which is somehow “best”. Two deconvolution
algorithms have been prevalent over the years: the Hoghom CLEAN algorithm and
maximum entropy method (MEM} deconvolution, and related techniques.

4,2.1 The CLEAN Algorithm

The dirty map IP is a convolution between the “true” brightness distribution and
the dirty beam. Each point in the field of view has been multiplied by the dirty
beam, and the dirty map may be regarded as a superposition of point sources, each
multiplied by the dirty beam. The Hdgbom CLEAN is an algorithm for dividing
each point by the dirty beam. However, because B is singular, it must do so in a
nonlinear fashion. Just as multiplication is repeated addition, division is repeated
subtraction. The essence of the Hoghom CLEAN is repeated “shift-and-subtraction”
of the dirty beam.

Inherent to the Hogbom CLEAN algorithm is the assumption that radio sources
are relatively spatially confined and are thus well-approximated by an appropriately
weighted superposition of delta functions. In practice, the method works remark-
ably well. The deconvolution proceeds as follows: 1) the pixel with the maximum



brightness is located in the map; 2) the dirty beam is multiplied by the product of
the maximum brightness and a gain factor ¢ < 1; 3) the weighted dirty beam is
shifted to the location of the maximum and subtracted from the map; 4) the algo-
rithm loops back to (1). The process is iterative and continues for a specific number
of iterations or until the residual map reaches some specified level. At this point,
the ensemble of weighted delta functions are added back to the residual map. The
addition of a § function in the image domain is equivalent to adding a sine wave of
some amplitude and phase to the visibility function. In this way, “holes” in the uv
domain are filled. Usually, each delta function is first multiplied by a “clean beam”,
a Gaussian with a FWHM similar to the intrinsic resolution of the instrument. In
the uv domain, this is equivalent to multiplying the visibility function by a broad
gaussian with a width corregsponding to the size of the array.

The appeal of the Hoghom CLEAN is its simplicity and the fact that it often
works! However, for extended, complicated sources, it can break down — it can be-
come unstable and introduce artefacts into the reconstruction. Alternatives must be
considered. One group of alternafives are maximum entropy or maximum-entropy-
like deconvolution schemes.

4.2.2 The MEM Algorithm

Under some circumstances, the source brightness distribution is poorly described as a
superposition of weighted delta functions. An attractive alternative to the CLEAN
algorithm is image regularization through optimization of a suitably constrained
functional of the data. One such functional is the configurational “entropy” of the
image. The configurational entropy, A, of an N pixel estimate {&;] ¢ = 1,2, ..., N}
of 1, relative to some measure {m;| ¢ = 1,2,..., N} is

N
H ==Y bilog(bi/ms).
i=1

There has been much confusion and anxiety over the use of this function and
the term used to describe it. Suffice it to say that it is a convenient function in
a practical sense because it 1) enforces positivity of the solution; 2) minimizes the
dispersion in pixel values (i.e., enforces maximum “smoothness” of the image - detail
does not appear unless it is found in the data); 3) it allows the introduction of a priori
information about the source via m. It should be pointed out, however, that there
are other functional forms which serve this purpose equally well. In practice, MEM
deconvolution is nothing more than a model/data comparison algorithm wherein a
model is iteratively constructed which 1) maximizes some entropy measure, and 2)
matches the data o within the noise n. A requirement that the flux F in the model
match the zero-spacing flux is also usually enforced. Hence, a functional of the form
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J=H—ax? - pF

is employed, where « and § are Lagrange muitipliers.

A key advantage of MEM deconvolution techniques is that they enable one to
introduce independent information about the source. For example, data from more
than one instrument can be used to jointly constrain the brightness distribution
{e.g., single dish plus interferometric observations), or from more than one pointing
{mosaicing — see §7.1). In the case of the solar imaging, MEM deconvolution has
been used to reconstruct full disk images at 21 cm using data from both the VLA
and the Arecibo 305 m telescope.

4.3 Sensitivity

In concluding this section on imaging, it is worth making a few points concerning
the sensitivity of an instrument. In particular, it’s worth distinguishing between
point-source senstivity and surface-brightness sensitivity, or the sensitivity of the
instrument to extended emission.

4.3.1  Point Source

The sensitivity of an array to a point source of emission is given by

— \/_Q-A"rBrsys (7)
%TJCA\/WQ

where AT is the rms variation in the brightness 7, kg is Boltzmann’s constant, n,
is the aperture efficiency, n. is the correlator efficiency, and A4 is the antenna area
{presumed identical for all antennas), Ny = N(N — 1}/2 is the number of antenna
baselines, Nyp is the number of independent IF channels, T is the total observing
time on source, and Av is the bandwidth. The system temperature Tsys embodies
many sources of noise, including that due to the receivers, ground spillover, the
atmosphere (at high frequencies), the galactic background (at low frequencies), the
source itself, and others. When cosmic sources are observed, the receiver noise usu-
ally dominates Tgys, (although this is becoming less true as receivers have steadily
improved). When observing the Sun with a telescope of even minimal forward gain,
the radiation flux from the Sun itself dominates Ty If the noise were completely
uncorrelated at all antennas, the system could be regarded as just having especially
poor receivers. However, the situation is complicated by the additional contribu-
tion to the noise produced by the correlated flux S¢ on each baseline (“self-noise”).
Under many circumstances, the correlated Hux is negligible compared to the total.
When this is not the case (e.g., for the shortest baselines in compact antenna con-
figurations or during a strong, compact microwave burst) one can no longer ignore
the contribution to the noise due to the correlated flux on each baseline.

AT
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4.3.2 Extended Emission

It is important to emphasize the difference between the sensitivity of a synthesis
array t0 a point source, and that to an extended source of emission. The brightness
of a sources is usually expressed in terms of flux per synthesized beam. A point
source has a constant flux per synthesized beam, regardless of the size (i.e., resolving
power) of that beam. The signal-to-noise ratio (SNR) is therefore independent of
the beam size. For an extended source which is resolved by the synthesized beam
the situation is different. If the surface brightness of the source is constant, say I,
the flux density per synthesized beam, £, is I and the SNR is I}/AT. The
SNR increases with g, which is desirable so long as €5 is smaller than the extended
structure of interest. The angular resolution of an array tends to increase linearly
with the size of the array, but its sensitivity to extended emission decreases as the
square of the array size. Clearly, the best sensitivity to extended emission is achieved
by matching the resolution of the instrument to the angular scale of the emission.
Short of moving antennas to a configuration matched to a particular source, this can
be acieved through a variety of schemes which weight the visbility data in various
ways (e.g., through tapering of the visibility function and/or weighting the visibilities
according to their distribution in the uv domain).

5 Limiting Factors in Synthesis Imaging

When one or more of the assumptions inherent to synthesis imaging are violated,
artefacts of varying severity are introduced into the image. I'll mention a few.

5.1 Bandwidth Smearing

So far we've considered interferometry and synthesis mapping in terms of quasi-
monchromatic radiation. In reality, radio felescopes observe radiation with a finite
bandwidth Av centered on some frequency v,. One the consequencies of this reality
is bandwidth smearing, or chromatic abberation. The spatial frequency coordinates
(1o, o) are typically computed with reference to v,. However, a range of spatial
frequencies are in fact measured, with (u,v) = (Uoto/V, volio /7). Since the process
of correlation and Fourier transformation are linear, we can therefore consider a
synthesized image obtained with finite bandwidth as a sum of contributions from all
parts of the frequency bandpass. The effect on the image can be shown through an
application of the similarity theorem of Fourier transforms:

2
V(ﬁu, ﬁv) = (i) I(iz, iim).
v 1 e Vo Vo

What this expression shows is that the image is scaled radially by a factor v/u, for
each frequency within the band, and the amplitude is multiplied by (v/v0)? (which
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conserves flux). The net effect of a finte bandwidth, then, is to smear the image in
the radial direction. The degree of smearing increases with angular distance from
the phase tracking center; that is, the smearing goes as (Av/v)VI% + m?2.

An approximate expression for the reduction in brightness due to bandwidth
smearing is

I 1 1/vAvON? 1 /yAvd\? g

L _§<21/093) —iﬁ(zyoas) ®
where v = 2v1n2 = 1.665, § is the angular offset from the phase tracking center, fg
is the angular width of the synthesized beam. For example, suppose we observe the
full disk of the Sun with an array of 5 km extent at a frequency of 10 GHz (6, ~= 0.8").
A bandwidih of only 1.2 MHz yields a 2% reduction in brightness due to bandwidth
smearing at the solar limb {# ~ 16'}. Since relatively large instantaneous bandwidths
are being considered for modern radioheliographs (~ 500 MHz) it appears that it
will need to be channelized prior to correlation.

5.2 Temporal Smearing

In §4.2 it was shown that an interferometer baseline traces out an eilipse in the uv
plane. The rate at which u and v change with time is given by

d 1 tH
,ﬁi - X(LXCOSH“LYSinH)EJ{
dv 1 6 - eyl
= = —X(LxsmésmH+LYBIQ5COSH)'&?'

Hence, for a finite integration time, a long baseline traces out a longer uv track than
a short baseline. I single (u, v) point is assigned to the time-averaged measurement,
however. The effect of time averaging is therefore equivalent to a distorted azimuthal
smearing; that is, the time-averaged image may be regarded as the sum of snapshots
maps acquired at each instant of time included in the integration. As the array
geometry rotates slightly during the integration, so do the snapshot maps. The
reduction in brightness due to time-averaging is

which can be written approximately (under certain assumptions which are not listed
here) as



Here, w, is the angular rotation rate of the Earth and 7, is the averaging time. A
convenient “rule-of-thumb” is to choose an averaging time which yields the same
degree of smearing as does the finite bandwidth. This may be expressed as

A
Y 1375 x 10427 (9)

We Vo Vo
For a bandwidth Arv = 1.2 MHz at a frequency of 10 GHz, the integration time
should be no more than about 1 sec.

TAy =

5.3 The w term

So long as synthesis imaging is restricted to a region of small angular extent, the w
term can be neglected (see §4.2), and a two dimensional Fourier transform relation-
ship between (I, m) and V{u, v} holds. How small a region is small enough?

By neglecting w, a phase error of order ww? is introduced. For a coplanar
array (such as the VLA), w is a linear function of v and/or v and the phase error
increases linearly across the /uv/ plane. It therefore manifests itself as an apparent
shift of the source position (which is dependent on the zenith angle and zimuth of
the source). Since the array geometry, as viewed from the source, changes with
time, the apparent source position also changes. The time-integrated sampling is
no longer coplanar. Again, the net result is a distortion across the field of view.
The magnitude of the apparent position shift in arcsec for a coplanar array is given
approximately by

92
74125 x 105
where z is the instrumental zenith angle. For a source on the zenith, the error is
negligible. If the source is at z ~ 60°, and & = 16, the position error amounts to
%2.'!.

It is important to note that for a snapshot map, an array like the VLA is coplanar
and a correction can be made for the distortion introduced by neglect of the w
term. When earth-rotation aperture synthesis is performed, the baselines are no
longer coplanar, and corrections for neglect of the w term cannot be easily made.
Instead, the w term must be included explicitly and a three-dimensional Fourier
transformation must be formulated.

aY] sin z (10}

5.4 Limited uv Coverage

The difficulties presented by limited uv coverage are twofold. The first problem,
the “hole” at the center of the uv plane whose radius is defined by the shortest
(projected) interferometer baseline, is not specific to solar observing. The origin of
the hole is in the existence of a minimum antenna spacing, which corresponds to
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the maximum angular scale measured. The problem can be particularly acute for
solar imaging because most of the power emitted by the (nonflaring) Sun resides in
the largest angular scales. Unless these scales are adequately measured or ctherwise
estimated, artifacts are present in the resulting maps, and the observed brightness
distribution is in error.

At the VLA this problem has sometimes been circumvented through the use
of the powerful image reconstruction and deconvolution algorithms now available.
Maximum entropy algorithms, briefly described in §5.2.2 provide a convenient way
to introduce measurements made with more than one instrument to the image de-
convolution problem. Hence, programs that depend on information contained in the
shortest baselines may acquire it from a separate, single-dish observation of the Sun
(e.g., by using the 305 m telescope at Arecibo).

For the remainder of this section I'll describe some problems which have a more
direct bearing on solar imaging. One is closely related to the limitations of uv
coverage, which I now describe.

5.5 Spatial Confusion

For single dish observation, confusion limits the instrumental sensitivity via contri-
butions to Tys from background sources in the beam. In synthesis imaging, the
limitation to sensitivity imposed by confusion is the result of uncleanable sidelobe
“clutter” in the image. The role of confusion in limiting the sensitivity of synthesis
arrays has long been recognized as a problem when imaging cosmic sources at low
frequencies, where the number of background sources in the primary beam is largest.
Perley and Erickson {1984) have shown that if the baseline of a given interferometer
is much larger than the element size (so that a large number of fringes cross the field
of view}, the interferometer response to a large number of point sources in the beam
can be regarded as & random variable. It can then be shown that the confusion
“noise”, o, is given by

oo = p\/ f A2(9) dQ f () dS

where A is the primary beam response, n(S} is the source distribution function
(i.e., the number of sources with flux densities between S and S + dS), and p is the
rms fluctuation of the synthesized beam. In other words, the confusion “noise” may
be expressed as an appropriately weighted, incoherent sum of the sidelobe responses
to all sources in the primary beam. The confusion noise can be reduced to the extent
that sidelobe responses to individual sources in the primary beam can be identified
and removed.

The situation with regard to the Sun is complicated by the fact that structure is
present in the beamn on a wide range of angular scales. Assigning a source distribution
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function to the brightness distribution function is problematic. Nevertheless, the
importance of the expression for o, is that it depends linearly on p. Confusion noise
can be reduced to the extent that the rms fluctuations of the synthesized beam can
be reduced. Improved uv coverage reduces p and increases dynamic range. Often,
observers rely on long scans for improved uv coverage. Unfortunately, in the case of
solar observations, the Sun’s radio brightness distribution varies in time due to (1)
the Sun’s rotation and {2) intrinsic source variability. Another problem that must
be confronted is therefore source variability.

5.6 Source Variability and Temporal Confusion

The improved dynamic range that one might hope to obtain through improved uv
coverage may be sabotaged by variations in the source brightness on a timescale
less than the duration of the observation. First, consider the Sun’s rotation. Since
the Sun’s equatorial rotation velocity is ~ 2 km s™1, a source at the center of the
Sun’s disk (e.g., an active region) will apparently move away from the center of the
disk at 9.3 arcsec hr~!. On the other hand, since the Sun is spherical, sources near
the limb apparently move very little due to rotation. In other words, the brightness
distribution changes differentially.

The success with which one can eliminate the effects of solar rotation depends
on the type of imaging program. If the field of interest is small compared to the
radius of the Sun, one may choose to explicitly correct for the rotation of the Sun
by tracking a particular feature, as is often done at the VLA, As the field becomes
large, however, parts of the image will be smeared and/or distorted by differential
motion across the field. Ideally, the region should be imaged in a time that is short
compared to that for significant degradation of the image by the Sun’s rotation. I
return to this point below.

I now turn to the problem of intrinsic variability in the radio brightness distribu-
tion. Consider a discrete source at some location (I, m) with brightness S Jy/beam.
Let its lifetime be 7 but suppose the observation is of duration 7" > 7. Then while
it is true that, limitations imposed by confusion aside for the moment, the rms
fluctuations on the image are reduced by +/7'/7 relative to those expected from an
integration of duration 7, it is also true that the brightness at (I, m) is averaged
down to 7.5/T. The net signal-to-noise ratio at ([, m) is thus reduced by /7/7. In
other words, the temporal smearing of shortlived contributions to the Sun’s radio
brightness distribution may lead to a net reduction in effective dynamic range.

A further complication is that if the radio brightness distribution on the sky
varies as a function of time, due to either solar rotation or intrinsic variability, the
convolution relation between the brightness distribution and the instrument response
function is no longer valid. The situation is further exacerbated by the fact that
the temporal variability in turn depends on position. The consequent breakdown of
deconvolution algorithms again limits the final dynamic range.
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What is required, then, is improved uv coverage over time scales that are short
in comparison with the lifetime of the phenomenon of interest, or compared to the
time for solar rotation to have a significant effect. [ return to this point in §7.2

6 Special Topics

6.1 Mosaicing

When the object one wishes to image is larger than the field of view of the instrument,
one must resori to mosaicing techniques. As the term implies, mosaicing involves
observing many fields, which are then patched together to form an image of large
angular size. One way to do this is through “linear mosaicing” wherein observations
acquired at many different pointings are separately mapped, deconvolved, and then
linarly combined with appropriate weighting. While linear mosaicing is sufficient
for some purposes, it does not recover the brighiness distribution on large angular
scales.

An alternative is “nonlinear mosaicing”. The technique is well-developed and
has rigorous underpinnings. It finds its basis in work of Ekers and Rots (1979},
but its present-day form, motivated by synthesis observations at mm wavelengths,
is largely due to Cornwell and collaberators.

As shown in §2, an interferometer is a device which measures V(u, v), the visibil-
ity function. The visibility function is related to the sky brightness, (!, m), through
a Fourier transform:

V(u,v) = f f AL, m)I(,m)e™2mdvmlgp g,

where A(l,m) is the primary beam pattern. A(l,m), of course, defines the field of
view and, as such, is a limiting factor for imaging large objects. Let us rewrite the
above equation with the pointing (I, m.) explicitly labeled:

V(u,v;io,me):f/A(l,m;lo, mo)I (1, m)e” T gp i

This form implicilty separates the pointing from the phase and delay tracking center.
If we assume that the primary beam is independent of pointing, we can then write

V(u, v lo, o) = ffA(l — Lo, . — o) I(L, m)e ™ 2T vml gy gy

Note that when (v, v) = (0, 0), this becomes
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V(0,0;l,,mo) = f/A(l Loy M = Mo ) I (L, m)dl dm,

which represents a single-dish measurement of the total power coming from the
region of sky within the primary beam.

To carry things further, let i{u,v) be the Fourier transform of I({,m), a(u,v) the
Fourier transform of the primary beam, and (ue,v,) be the variables conjugate to
(lo,ms). Then the Fourier transform of V{u, v; lo, mo) with respect to (I, mo) is

/ / V (10, 05 Ly, mo)e ™ 2m{uelotomo) gl dim = a(uo, ve)i(u + tta, v + Vo).

The physical meaning of this equation is the following: suppose we scan the inter-
ferometer in pointing position (ls, ms). Then the Fourier transform of the measured
visibilities with respect to (Io,m.) will yield the Fourier transform of the sky bright-
ness distribution, modulated by the Fourier transform of the primary beam. The
spatial frequencies included in the Fourier transform of the primary beam extend
from 0 to D/ X, where D is the antenna diameter and A is the wavelength observed.
We therefore recover spatial frequencies around a particular (u, v) out to a radius
D/X. To put this more simply, consider a pair of antennas, each with a diameter
D, separated by a distance B. In one dimension, the range of spatial frequencies to
which the interferometer is sensitive is then (B—D) /X to (B+D)/A. An observation
at a single pointing vields a visibility measurement which is a linear combination of
these spatial frequencies. An observation at a different pointing yield a different lin-
ear combination of these spatial frequencies. Given a sufficient number of pointings,
the individual spatial frequencies can be recovered via the Fourier transform with
respect to pointing. In practice, one only needs to sample in the image domain at
regular intervals of A/2D or less.

Cornwell (1989) has shown that nonlinear mosaicing is conveniently implemented
in a MEM-like ioint deconvolution scheme where an extremum of the modified func-
tional

M
J=H-a) xi-pF

i=1
is found, where M is the number of discrete pointings. Mosaicing will play an
important role in imagin with the NRAO’s Millimeter Array (MMA), which will
have a rather small field of view. While only small antennas are likely needed for
the SRT (2-3 m), the highest frequencies will still suffer from a limited field of view
and mosaicing techniques may become necessary.
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6.2 Freguency Synthesis

The spatial frequency measured by an antenna baseline b is b/A. While antenna
locations are generally fixed, the spatial frequency sampled by a particular baseline
can nevertheless be changed by varying the wavelength observed. This is the essence
of frequency systhesis, wherein several discrete frequencies are observed to improve
the uv coverage of the array. In the face of problems like spatial and temporal
confusion, described in §6.5 and §6.6, frequency synthesis is an attractive way to
greatly improve the uv coverage on a short timescale.

The idea dates back to the late-1950s but has not been applied extensively in
practice because of problems discussed below. It has been employed by the OVRO
solar array for the purposes of source identification, and by the MERLIN array
in the UK. The technique has been described in detail by Conway, Cornwell, and
Wilkenson (1990). These authors were motivated by the fact that the uv coverage of
the MERLIN synthesis array is quite sparse. Frequency synthesis over a bandwidth
Av /v w2 £20% yielded an enormous improvement in the uvcoverage.

The cost of frequency synthesis lies in the complexity introduced by the fact that
the source structure varies with frequency. Unless one can successfully deconvolve
both the instrumental point spread function and the source spectrum from the dirty
map, the result of frequency sysnthesis mapping is once again limited in dynamic
range, this time by spectral confusion. However, since the radio brightness distribu-
tion is highly correlated in adjacent frequencies, joint estimation of the brightness
distribution and its spectrum is possible. Conway et al. have analyzed the case for
which

v\ —ellm)
I{l,my ) = Il m; ) (-—z-)

Ve
Designating the Fourier transform operator as F’?, the visibilities sampled at fre-

quency ¥; can be written

i a(l,m)+ae
V(u, v; 1) = B [1(1, ms ) (;)

Q

15w, v; 14)

Assuming «{l,m) can be written o, + o'(l,m), with ¢, representing some overall
spectral index and ' position-dependent departures from a,. Dividing by the overall
brightness distribution, one obtains

: Y — Y i v ™) -
Vi{u, v v) = F'I(1, m; 1) — 1S (u, v; 1)

Q

The frequency synthesized visibility data, divided by the overall brightness distri-
bution, are then the sum over all frequencies sampled:
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(u,v} = ZF (4, m; 1)) 8 (u, vy 1)

where I'(1, m; 1) = (1, m; vo)(vi/ve)~® &™), I'(1, m; 13} can be expanded in a Taylor
series which is either linear or logarithmic in v;/v,. Because the dependence on o is
a power-law, a logarithmic expansion is perhaps more natural.

Conway et al. show that, by doing so, one can represent the dirty image as a
composite:

1
ID:(I*Bc,)-I-(Ia’*B1)+~2~(Ia'2*B2)+... (11)

where the dirty beams are given by

Ny

Bl = F'[ Z[ln(yo/J/i)]“S(u,v; ;)

i=1

In cases considered by Conway et al. , &’ £G.1 — 0.2, One can imagine case of
interest on the Sun where this is also true over bandwidths of #25% or s0. Because
of the presence of a weighting of &', the higher order terms of the expansion become
negligible and in practice the deconvolution might be confined to only the first, or
the first and second terms of eqn. (11}.

The above analysis is meant o be illustrative. Practical application of the tech-
nigue to the Sun is in its fledgling stage. A great deal of work on the spectral forms
encountered in practice over the bandwidths of interest remains to be done, as well
as further exploration of techniques for performing the double (spectral and spatial)
deconvolution of frequency-synthesized maps.
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