Introduction to SEPs

Christina Cohen

Caltech
Outline

• What are SEPs?
 › And why do we care?

• How are the measured?
 › on the ground
 › in space

• What is the SEP history?
 › pre-1997
 › post 1997

• What is new and exciting about SEPs?
 › in my humble opinion.....
What are SEPs?

- Solar Energetic Particles
 - Solar = assumed to originate at the Sun
 - Energetic = historically above a few hundred keV/nuc
 - Particles = ions (mostly H, He like the Sun) + electrons

- Seen as increases in counting rates of ions (and/or electrons) of energies usually above 0.1 MeV/nucleon
Why do we care about SEPs?

- A sample of the Sun
 - one of the most accurately measured solar samples
 - if we can just figure out the details of creating them and getting them here
- Earth effects
 - energetic particles hitting the Earth’s atmosphere excite atoms and create aurora
Aurora Examples

- energetic particles hitting the Earth’s atmosphere excite atoms and create auroras.
Earth Radiation Belts

- Energetic particles are trapped in belts around the Earth
- Radiation hazard for Earth-orbiting spacecraft
Why do we care about SEPs?

- A sample of the Sun
 - one of the most accurately measured solar samples
 - if we can just figure out the details of creating them and getting them here

- Earth effects
 - energetic particles hitting the Earth’s atmosphere excite atoms and create aurora
 - energetic particles contribute to the radiation belts
 - part of geomagnetic storms which can cause black outs
 - change in Earth’s magnetic field induces strong currents in power system
 - Hydro Quebec lost power grid for 9 hours in March 1989
Why do we care about SEPs?

• **Spacecraft Effects**
 › Loss of data
 › Spurious signals
 • False alarms, noise strobes, erroneous telemetry values
 › Phantom commands
 • For example gain changes and attitude sensor errors
 › Mission or sensor degradation
 › Solar array degradation
 › Safeholds
 › Latchups
 › Subsystem failure
 • Loss of a redundant system
 › Mission Loss
How are SEPs Measured?

- On the ground
 - neutron monitors (indirect measurement)

- In space (since early 1960s)
 - first measurements (scintillation and Geiger counters)
 - \(\frac{dE}{dx} \) vs \(E \) technique
 - Proportional counters
 - Solid state detectors
 - Time of flight
 - \(\frac{E}{q} + \frac{dE}{dx} \) vs \(E \) (SEPICA)

What measure history (old/new) excitement
How are SEPs Measured?

• On the ground
 › neutron monitors

• In space (since early 1960s)
 › first measurements
 › dE/dx vs E technique
 • Proportional counters
 • Solid state detectors
 › Time of flight
 › E/q + dE/dx vs E
How are SEPs Measured?

\[
\frac{dE}{dx} \propto (Z/V)^2 \propto (MZ^2/E)
\]

\[
E \frac{dE}{dx} \propto Z^2M
\]

\[
\frac{dE}{dx} \sim \frac{\Delta E}{L} = \frac{\Delta E}{(L_0 \text{ sec } \theta)}
\]
How are SEPs Measured?

- On the ground
 - neutron monitors (indirect measurement)
- In space (since early 1960s)
 - first measurements (scintillation counters)
 - dE/dx vs E technique
 - Proportional counters
 - Solid state detectors
 - Time of flight
 - E/q + dE/dx vs E (SEPICA)
How are SEPs Measured?

- On the ground
 - neutron monitors (indirect measurement)
- In space (since early 1960s)
 - first measurements (scintillation and Geiger counters)
 - dE/dx vs E technique
 - Proportional counters
 - Solid state detectors
 - Time of flight
 - $E/q + dE/dx$ vs E (SEPICA)

What measure history (old/new) excitement
What is the History of SEPs? (pre-1997)

- First detection with connection to solar flare observation - Forbush 1946 in neutron monitor
- Timing related to gamma ray flare 1956 (most well studied)
- Better in space because can see them directly
 - space age
 - intensity
 - energy spectra
 - composition

What measure history (old/new) excitement
What is the History of SEPs?
(pre-1997)

- First detection with connection to solar flare observation - Forbush 1946 in neutron monitor
- Timing related to gamma ray flare 1956 (most well studied)
- Better in space because - space age
 - intensity
 - energy spectra
 - composition

FIGURE 2. Chicago neutron monitor record of the ground level event of 23 February 1956 (adapted from 5).
What is the History of SEPs? (pre-1997)

- At the same time...
 - flares are being categorized by size, duration, emission wavelength
 - radio emission is being categorized
 - flares and radio emission combined to create...

- Two classes of flares
 - Impulsive
 - Gradual
What is the History of SEPs? (pre-1997)

- Correlations with SEP characteristics results in a 2 class SEP system:

<table>
<thead>
<tr>
<th></th>
<th>Impulsive</th>
<th>Gradual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flare Characteristics</td>
<td>Short duration Compact/Point Source</td>
<td>Long duration Large Source</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radio Characteristics</td>
<td>Type III/V</td>
<td>Type II/IV</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Particle Characteristics</td>
<td>(^3)He, e(^-), heavy ion rich short duration, small, limited longitude</td>
<td>SW like composition long duration, large, wide longitude</td>
</tr>
</tbody>
</table>

What measure history (old/new) excitement
What is the History of SEPs? (pre-1997)

Gradual

Impulsive

Figure 2.2. Intensity-time profiles of electrons and protons in ‘pure’ (a) gradual and (b) impulsive SEP events. The gradual event is a disappearing-filament event with a CME but no impulsive flare. The impulsive events come from a series of flares with no CMEs.
What is the History of SEPs?
(pre-1997)

• All SEPs created by flares
 › slight problem with longitude distribution of gradual events
 › ideas of storage, cross-field transport, lots of scattering in the interplanetary medium (not happy about this)
 › Not a good correlation between interacting protons and SEP protons (SMM allowed gamma-ray measurements in space 1980)

• Enter Skylab and CME observations (1978)
 › high correlation (96%) between gradual flares and CMEs
 › CMEs can drive shocks and shocks can accelerate...
What is the History of SEPs? (pre-1997)

• Nice things about CME-shock acceleration for gradual SEP events
 › CME angular size close to longitude distribution of gradual SEP events
 › Solves the cross-field transport ‘problem’
 › Correlation between CME size/speed and SEP size
 › Found a gradual SEP event with no flare but with CME
 › Found CMEs did not occur with impulsive SEP events
 › Long acceleration in the IPM explained long duration of gradual SEP events (compared to
What is the History of SEPs? (pre-1997)

• Nice things about CME-shock acceleration for gradual SEP events
 › CME angular size close to longitude distribution of gradual SEP events
 › Solves the cross-field transport 'problem'
 › Correlation between CME size and SEP size
 › Found a gradual SEP event with no flare but with CME
 › Found CMEs did not occur with impulsive SEP events
 › Long acceleration in the IPM explained long duration of gradual SEP events
What is the History of SEPs? (pre-1997)

- ‘Paradigm Shift’
 - Had 1 acceleration mechanism for all SEP events
 - Now have two independent acceleration mechanisms
 - CME-driven shock acceleration => Gradual SEP events
 - Impulsive flare acceleration => Impulsive SEP events

Reames 1999
What is the History of SEPs? (pre-1997)

- Flurry of activity in SEP studies to define characteristics of two classes (1980s)
- Impulsive
 - Klecker et al. 1984 finds charge state difference
 - Mason et al. 1986 finds systematic composition difference
 - Reames explains charge and composition characteristics in terms of low altitude

What measure history (old/new) excitement
What is the History of SEPs? (pre-1997)

- Flurry of activity in SEP studies to define characteristics of two classes (1980s)
 - Impulsive
 - Klecker et al. 1984 finds charge state difference
 - Mason et al. 1986 finds systematic composition difference
 - Reames explains charge and composition characteristics in terms of low altitude

What measure history (old/new) excitement
What is the History of SEPs? (pre-1997)

- Flurry of activity in SEP studies to define characteristics of two classes (1980s)
 - Impulsive
 - Klecker et al. finds charge state difference
 - Mason et al. finds systematic composition difference
 - Reames explains charge and composition characteristics

What measure history (old/new) excitement
What is the History of SEPs? (pre-1997)

- Gradual
 - All flare material is like impulsive SEP material but gradual SEP material looks like the solar wind
 - composition
 - charge states
 - Roll offs of spectra consistent with diffusion from shock region
What is the History of SEPs?
(pre-1997)

- Gradual
 - All flare material is like impulsive SEP material but gradual SEP material looks like the solar wind
 - composition
 - charge states
 - Roll offs of spectra consistent with diffusion from shock region

What measure history (old/new) excitement
What is the History of SEPs? (pre-1997)

- The 1990s standard 2 class system table

<table>
<thead>
<tr>
<th>Two Groups =></th>
<th>Impulsive Flare acceleration</th>
<th>Gradual Shock acceleration</th>
</tr>
</thead>
<tbody>
<tr>
<td>3He/4He</td>
<td>~1</td>
<td>~0.0005</td>
</tr>
<tr>
<td>Fe/O</td>
<td>~1</td>
<td>~0.1</td>
</tr>
<tr>
<td>Q_{Fe}</td>
<td>~20</td>
<td>~14</td>
</tr>
<tr>
<td>Duration</td>
<td>Hours</td>
<td>Days</td>
</tr>
<tr>
<td>X-rays</td>
<td>Impulsive</td>
<td>Gradual</td>
</tr>
<tr>
<td>Coronagraph</td>
<td>--</td>
<td>CME (96%)</td>
</tr>
</tbody>
</table>

Big Point to remember:
» the two classes are *exclusive*

Flare particles in gradual events do not escape into the IPM because of closed field lines behind the CME.
What is the History of SEPs? (pre-1997)

- The 1990s standard 2 class system table

<table>
<thead>
<tr>
<th>Two Groups</th>
<th>Impulsive</th>
<th>Gradual</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Shock</td>
<td>Gradual</td>
</tr>
<tr>
<td>3He/O</td>
<td>0.96</td>
<td>~0.1</td>
</tr>
<tr>
<td>Fe/Al</td>
<td>~0.0005</td>
<td>~14</td>
</tr>
<tr>
<td>QFe</td>
<td>~0.1</td>
<td>~0.0005</td>
</tr>
</tbody>
</table>

Big Point to remember:
- the two classes are exclusive

Flare particles in gradual events do not escape into the IPM because of closed field lines behind the CME.
What is the History of SEPs? (post-1997)

• ACE launches August 1997
 › Suite of high-tech instruments to study heavy ions in SEP events over 3 orders of magnitude in energy (.1-100 MeV/n)
 • Elemental Composition (ULEIS+SIS)
 • Isotopic Composition (ULEIS+SIS)
 • Charge State Composition (SEPICA)
 › In November 1997, ACE observes first gradual SEP events
 • Composition does not look as it should...

What measure history (old/new) excitement
What is the History of SEPs? (post-1997)

• ACE launches August 1997
 › Suite of high-tech instruments to study heavy ions in SEP events over 3 orders of energy (.1-100 MeV/n)
 • Elemental Composition (ULEIS)
 • Isotopic Composition (ULEIS+SIS)
 • Charge State Composition (SEPICA)
 › In November 1997, ACE observes first gradual SEP events
 • Composition does not look as it should...
What is the History of SEPs? (post-1997)

• Within the first year, ACE observes many more of these enriched-Fe events
 › Composition from C-Ni looks impulsive (12-60 MeV/n)
 › Enhancements of 3He (not at impulsive levels)

• SAMPEX measures charge states with geomagnetic cutoff technique
 › At 30 MeV/n Q_{Fe} is ~20 (like impulsive)
 › Q_{Fe} is *energy dependent*
What is the History of SEPs?

- Within the first year, ACE observed many more of these enriched Fe events:
 - Composition from C-Ni looks impulsive (12-60 MeV/n)
 - Enhancements of 3He (not at impulsive levels)

- SAMPEX measures charge states with geomagnetic cutoff technique:
 - \(Q_{Fe} \) is \(\sim 20 \) (like impulsive)
 - \(Q_{Fe} \) is energy dependent

Cohen et al. 1999
Leske et al.
What is the History of SEPs?

• Within the first year, ACE observes many more of these enriched-Fe events:
 - Composition from C-Ni looks impulsive (12-60 MeV/nuc)
 - Enhancements of 3He (not at impulsive levels)

• SAMPEX measures charge states with geomagnetic cutoff technique:
 - A_t at 30 MeV/nuc Q_{Fe} is ~20 (like impulsive)
 - Q_{Fe} is energy dependent

What measure history (old/new) excitement

Moebius et al., 1999

Mazur et al., 1999 Energy (MeV/nuc)
What is the History of SEPs? (post-1997)

- How should we classify these events?

<table>
<thead>
<tr>
<th>Two Groups =></th>
<th>Impulsive Flare acceleration</th>
<th>Gradual Shock acceleration</th>
</tr>
</thead>
<tbody>
<tr>
<td>$^3\text{He}/^4\text{He}$</td>
<td>≈ 1</td>
<td>≈ 0.0005</td>
</tr>
<tr>
<td>Fe/O</td>
<td>≈ 1</td>
<td>≈ 0.1</td>
</tr>
<tr>
<td>Q_{Fe}</td>
<td>≈ 20</td>
<td>≈ 14</td>
</tr>
<tr>
<td>Duration</td>
<td>Hours</td>
<td>Days</td>
</tr>
<tr>
<td>X-rays</td>
<td>Impulsive</td>
<td>Gradual</td>
</tr>
<tr>
<td>Coronagraph</td>
<td>--</td>
<td>\checkmark CME (96%)</td>
</tr>
</tbody>
</table>
What is the History of SEPs?
(post-1997)

• How should we classify these events?

<table>
<thead>
<tr>
<th>Gradual Shock</th>
<th>Acceleration</th>
</tr>
</thead>
<tbody>
<tr>
<td>~0.0005</td>
<td>~0.1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fe/O</th>
<th>~1</th>
<th>~0.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q_{Fe}</td>
<td>~20</td>
<td>~14</td>
</tr>
<tr>
<td>Duration</td>
<td>Hours</td>
<td>Days</td>
</tr>
<tr>
<td>X-rays</td>
<td>Impulsive</td>
<td>Gradual</td>
</tr>
<tr>
<td>Coronagraph</td>
<td>--</td>
<td>CME (96%)</td>
</tr>
</tbody>
</table>

What measure history (old/new) excitement
What is the History of SEPs? (post-1997)

Classify these events?

<table>
<thead>
<tr>
<th>Two Groups =></th>
<th>Impulsive Flare acceleration</th>
<th>Gradual Shock acceleration</th>
</tr>
</thead>
<tbody>
<tr>
<td>$^{3}\text{He}/^{4}\text{He}$</td>
<td>~ 1</td>
<td>~ 0.0005</td>
</tr>
<tr>
<td>Fe/O</td>
<td>~ 1</td>
<td>~ 0.1</td>
</tr>
<tr>
<td>Q_{Fe}</td>
<td>$\sqrt{\text{ }}$</td>
<td>~ 20</td>
</tr>
<tr>
<td>Duration</td>
<td>Hours</td>
<td>Days</td>
</tr>
<tr>
<td>X-rays</td>
<td>Impulsive $\sqrt{\text{ }}$</td>
<td>Gradual</td>
</tr>
<tr>
<td>Coronagraph</td>
<td>--</td>
<td>$\sqrt{\text{ CME (96%)}}$</td>
</tr>
</tbody>
</table>
What is the History of SEPs? (post-1997)

How should we classify these events?

<table>
<thead>
<tr>
<th>Two Groups =></th>
<th>Impulsive Flare acceleration</th>
<th>Gradual Shock acceleration</th>
</tr>
</thead>
<tbody>
<tr>
<td>$^{3}\text{He}/^{4}\text{He}$</td>
<td>~ 1</td>
<td>~ 0.0005</td>
</tr>
<tr>
<td>Fe/O</td>
<td>$\sqrt{}$</td>
<td>~ 1</td>
</tr>
<tr>
<td>Q_{Fe}</td>
<td>$\sqrt{}$</td>
<td>~ 20</td>
</tr>
<tr>
<td>Duration</td>
<td>Hours</td>
<td>$\sqrt{}$</td>
</tr>
<tr>
<td>X-rays</td>
<td>Impulsive</td>
<td>$\sqrt{}$</td>
</tr>
<tr>
<td>Coronagraph</td>
<td>--</td>
<td>$\sqrt{}$</td>
</tr>
</tbody>
</table>

- Gradual
- Impulsive

What measure history (old/new) excitement
What is the History of SEPs? (post-1997)

• What happens when new results challenge old beliefs?
 › Q/M effect
 › Velocity dispersion effect

• Grudging acceptance into existing framework (shock acceleration)
 › Diffusion from shock region
 › Suprathermal flare material (small amounts from preceding flares)
What happens when new results challenge old beliefs?

- Q/M effect
- Velocity dispersion effect

Grudging acceptance into existing framework (shock acceleration)

- Diffusion from shock region
- Suprathermal flare material (small amounts from preceding flares)

Not always

What is the History of SEPs?

(post-1997)

Not always
What happens when new results challenge old beliefs?

- Q/M effect
- Velocity dispersion effect

Grudging acceptance into existing framework (shock acceleration)

- Diffusion from shock region
- Suprathermal flare material (small amounts from preceding flares)

Not always

What is the History of SEPs? (post-1997)

What measure history (old/new) excitement
What happens when new results challenge old beliefs?

- Q/M effect
- Velocity dispersion effect

Grudging acceptance into existing framework (shock acceleration)

- Diffusion from shock region
- Suprathermal flare material (small amounts from preceding flares)

Not always

What is the History of SEPs?

(post-1997)
What is the History of SEPs? (post-1997)

- What happens when new results challenge old beliefs?
 › Q/M effect
 › Velocity dispersion effect
- Grudging acceptance into existing framework (shock acceleration)
 › Diffusion from shock region
 › Suprathermal flare material (small amounts from preceding flares)

What measure history (old/new) excitement
What is the History of SEPs? (post-1997)

• What happens when new results challenge old beliefs?
 › Q/M effect
 › Velocity dispersion effect

• Grudging acceptance into existing framework (shock acceleration)
 › Diffusion from shock region
 › Suprathermal flare material (small amounts from preceding flares)

What measure history (old/new) excitement

Not always
What is New and Exciting About SEPs?

• How do we explain these results?
 › Flare material in gradual events
 › Energy dependent charge states and composition
 › CMEs seen with impulsive SEP events
 › Type IIIs seen with gradual SEP events
 › gradual SEP events don’t look like solar wind
What is New and Exciting About SEPs?

• How do we explain these results?
 › Flare material in gradual events
 › Energy dependent charge states
 › CMEs seen with impulsive SEP events
 › Gradual SEP events don't look like solar wind
What is New and Exciting About SEPs?

• How do we explain these results?
 › Flare material in gradual events
 › Energy dependent charge states and composition
 › CMEs seen with impulsive SEP events
 › Type IIIs seen with gradual SEP events
 › Gradual SEP events don't look like solar wind
What is New and Exciting About SEPs?

- How do we explain these results?
 - Flare material in gradual events
 - Energy dependent charge states and composition
 - CMEs seen with impulsive SEP events
 - Type IIIs seen with gradual SEP events
 - Gradual SEP events don't look like solar wind

Mewaldt et al. 2000
What is New and Exciting About SEPs?

• Back to the big questions
 › Are there 2 distinct classes of SEP events??
 › What is being accelerated?
 › How is it being accelerated?
What is New and Exciting About SEPs?

• Back to the big questions
 › Are there 2 distinct classes of SEP events??
What is New and Exciting About SEPs?

• Back to the big questions
 › Are there 2 distinct classes of SEP events??
 › What is being accelerated?
 › How is it being accelerated?

Probably not 2 separate classes of events
But 2 acceleration mechanisms (the hard part is distinguishing them in SEP observations)

What measure history (old/new) excitement
What is New and Exciting About SEPs?

• Two competing theories
 › Shock orientation
 • flare suprathermals present → energy-dependent composition of the seed population
 • perpendicular vs parallel shock difference
 › Direct flare contribution
 • flare particles can escape
 • observation depends on
 » connection to flare
 » strength of shock
 » size of flare
What is New and Exciting About SEPs?

- Two competing theories
 - Shock orientation
 - flare suprathermals present
 - energy-dependent composition of the seed population
 - perpendicular vs parallel shock difference
 - Direct flare contribution
 - flare particles can escape
 - observation depends on
 - connection to flare
 - strength of shock
 - size of flare

Tylka et al. 2005
What is New and Exciting About SEPs?

- Two competing theories

- Shock orientation
 - flare suprathermals present
 - energy-dependent composition of the seed population
 - perpendicular vs parallel shock difference

- Direct flare contribution
 - flare particles can escape
 - observation depends on
 - connection to flare
 - strength of shock
 - size of flare

What measure history (old/new) excitement

Cane et al. 2003
What is New and Exciting About SEPs?

• Two competing theories - How to decide?
 › Measurements at different longitudes at the same time

STEREO
What is New and Exciting About SEPs?

• Two competing theories - How to decide?
 › Measurements at different longitudes at the same time
 › Measurements closer to the Sun (and/or at different distances at the same time)