Summer School 2006
High Energy Solar Physics

Thermal Radiation

Brian R. Dennis
NASA
Goddard Space Flight Center
Greenbelt MD USA

Kenneth J. H. Phillips
University College
Mullard Space Science Lab.
London, UK

Monday, June 19, 2006, 11 – 12:30 EDT
Outline

- Introduction
- Thermal continua & line emission
- Atomic data bases - CHIANTI v. 5.2
- TRACE movie
- FIP effect
- Flare Fe XXV emission lines
- DEM
- Blue shifts & line broadening
- Flare energetics
- Future Possibilities
Introduction

- Text Books
 - Aschwanden – Physics of the Solar Corona
 - Emslie and Tandberg-Hansen - Solar Flare Physics
 - Harra & Mason – Space Science
 - Herzberg – Atomic Spectra & Structure
 - Semat – Introduction to Atomic Physics (~1950)

- Thermal Radiation
 - relevance to high energy solar physics
 - Optical, UV, EUV, X-rays
 - Lines & continua
 - Radio not covered
Why study thermal radiation?

- **Negatives**
 - Can’t differentiate between energy release processes
 - All energy release processes produce heat.
 - Nonthermal products become thermal.
 - Line spectra complicated.

- **Positives**
 - Line spectra give lots of information.
 - Provides context information for high energy processes.
 - Images, spectra, light curves.
 - Morphology, temperature, density, abundances.
 - Magnetic field from Zeeman splitting
 - Optical lines in photosphere
 - IR lines in corona.
 - Total energy in thermal plasma
 - Total radiated energy
 - The best measure of the total flare energy.
Thermal Radiation

- **Visible Radiation**
 - Temperature structure of atmosphere
 - Element abundances (Fraunhofer lines, “curve of growth analysis.”)
 - Lower chromosphere (Hα, Ca II H & K optically thick, cores emitted in chromosphere)
 - Magnetic field

- **UV & EUV**
 - Chromosphere (H Ly-α, He I & II)
 - Transition region & corona (1600, 171, 195 Å)

- **Soft X-rays**
 - Active regions
 - Flares

- **Radio**
Intensity & Flux

Specific Intensity
(erg cm\(^{-2}\) s\(^{-1}\) keV\(^{-1}\) ster\(^{-1}\))

Detected Flux
(erg cm\(^{-2}\) s\(^{-1}\) keV\(^{-1}\))

received intensity
(erg cm\(^{-2}\) s\(^{-1}\) keV\(^{-1}\) ster\(^{-1}\))
Intensity & Flux

- Specific Intensity of Source
 - Units - erg cm\(^{-2}\) s\(^{-1}\) [keV/erg/Hz/cm]\(^{-1}\) ster\(^{-1}\)
 - Energy emitted by source per unit area of source, time, photon parameter, & solid angle.

- Flux of photons from source detected in space
 - Units - photons cm\(^{-2}\) s\(^{-1}\) [keV/erg/Hz/cm]\(^{-1}\)
 - Number of photons detected per unit detector area, time, & photon energy.

- Total rate of energy emitted by source
 - Units - erg s\(^{-1}\) [keV/erg/Hz/cm]\(^{-1}\)
 - \(=\) Flux \(\times\) \(2\pi\) \(D^2\)
 - \(D\) = distance between source and detector (1 AU)
 - Assumes isotropic emission over upward hemisphere.
Solar Spectrum

![Graph showing the solar spectrum with logarithmic scales for flux and wavelength. The graph includes labels for Corona, Chromosphere, Photosphere, and a black-body spectrum with a temperature of 5762 K.]
Black-Body Radiation

- Equilibrium between emission & absorption
 - Applies to photosphere

- Kirchhoff’s Law: \[\epsilon_\nu = n_\nu^2 \alpha_\nu B_\nu(T) \]

- \(\epsilon \) - emission coefficient (erg s\(^{-1}\) cm\(^{-3}\) Hz\(^{-1}\) rad\(^{-1}\))
- \(\alpha \) - absorption coefficient (erg s\(^{-1}\) cm\(^{-3}\) Hz\(^{-1}\) rad\(^{-1}\))
- \(n \) - refractive index of the medium
- \(B(T) \) - universal brightness function at temperature T (erg s\(^{-1}\) cm\(^{-2}\) cm\(^{-1}\) steradian\(^{-1}\))
- \(\nu \) - frequency (Hz)
Planck’s Law
Blackbody Brightness vs. λ (or ν) and T

$$B_\lambda(T) = \frac{2hc^2n^2}{\lambda^5}[\exp\left(\frac{hc}{\lambda k_BT}\right) - 1]$$

$B(T)$ – Planck function (erg s$^{-1}$ cm$^{-2}$ cm$^{-1}$ steradian$^{-1}$)
h – Planck’s constant = 6.63 10$^{-27}$ erg s
ν – frequency in Hz
λ – wavelength in cm
n – refractive index of the medium
c – velocity of light = 3.0 1010 cm s$^{-1}$
k_B – Boltzmann’s constant = 1.38 10$^{-16}$ erg K$^{-1}$
T – temperature in K
Black-Body Radiation
Planck’s Function - $B_\lambda(T)$

![Graph showing the distribution of brightness across different wavelengths for various temperatures.](image-url)
Planck’s Function - $B_\lambda(T)$

- **Wien Displacement Law**

 Wavelength at which B_λ is maximum

 $$\lambda_{max} = \frac{0.2898}{T(K)} \ (cm)$$

- **Stefan-Boltzmann Law**

 Total flux - all wavelengths over the visible hemisphere

 $$\pi B(T) = \pi \int_0^\infty B_\lambda(T)d\lambda = n_\nu^2 \sigma T^4$$

 σ - Stefan-Boltzmann constant $= 5.67 \times 10^{-5}$ erg s$^{-1}$ cm$^{-2}$ K$^{-4}$
Planck’s Law Approximations

Short Wavelengths (UV, X-rays)

Wien’s Law
\[B_\nu(T) = \frac{2h\nu^3 n_\nu}{c^2} \exp\left(-\frac{h\nu}{k_B T}\right) \]

\(k_B \) – Boltzmann’s constant = 1.38 \(10^{-16} \) erg K\(^{-1}\)

Long Wavelengths (Radio)

Rayleigh-Jeans Law
\[B_\nu(T) = \frac{2\nu^2 k_B T n_\nu^2}{c^2} \]
LTE
Local Thermodynamic Equilibrium

- Maxwellian velocity distribution
 Mean energy = $\frac{3}{2} k T$ per particle
 $$f(v) = n \left(\frac{m}{2pk_B T}\right)^{\frac{3}{2}} 4\pi v^2 \exp\left(-\frac{mv^2}{2k_B T}\right)$$
 particles cm$^{-3}$ (cm s$^{-1}$)$^{-1}$

- Applies in photosphere

- Ionization equilibrium

 Saha Equation
 $$\frac{N_k}{N_0} = \frac{2}{n_e} \frac{(2\pi m_e k_B T)^{3/2}}{\hbar^3} \frac{g_k^l}{g_0} \exp\left(-\frac{\epsilon_k}{k_B T}\right)$$

 Fraction of ions in k state of ionization
Solar Spectrum

Quiet Sun & Flares - Gamma-rays to Radio
Chromosphere & Corona

Chromosphere
- partially ionized

Corona
- fully ionized

Transition Region

Particle density (cm$^{-3}$)
- n_e
- n_{H_0}

Temperature T_e [K]

Height above photosphere (km)
- T_e
- n_e
Chromosphere & Corona

- Not black-body
 - Optically thin in EUV & X-rays
 - Line emission from H, He, ionized metals, etc.
- Not LTE
- Chromosphere partially ionized
- Corona is fully ionized
Principal Radiations

- Continuum Emission
 - Free-free emission - thermal bremsstrahlung
 - Free-bound emission – radiation recombination
 - Two-photon emission

- Line Emission
 - Bound-bound transitions in atoms & ions

- Scattered Radiation
 - Thompson scattering of photospheric emission
 (→ LASCO images)
Free-Free Emission
Bremsstrahlung

Free-free emission

Electron in hyperbolic orbit
Free-Free Emission
Thermal Bremsstrahlung

■ Photon Spectrum

\[F(\epsilon) \approx 8.1 \times 10^{-39} \int_V \frac{\exp \left(-\frac{\epsilon}{k_B T} \right)}{T^{1/2}} n^2 \, dV \]

Units - keV s\(^{-1}\) cm\(^{-2}\) keV\(^{-1}\)
\(\epsilon\) - photon energy = \(h\nu\)
n - electron and ion density
V - source volume
Free-Bound Emission
Recombination Radiation

Photon
Energy: $\epsilon = E_e - E_L$?

Electron e^-
Energy: E_e

Nucleus $+Ze$
Energy Level: E_L

Continuum emission
Spectral edges at atomic energy levels
Two-Photon Continuum

- Ion in excited $J = 0$ state, energy E_1
 (J is total angular momentum)
- De-excites to ground state with $J = 0$, energy E_0
- Single photon cannot be emitted
 (because photon spin = 1)
- 2 photons with opposite spins can be emitted
- Photon energies, $\epsilon_1 + \epsilon_2 = E_1 - E_0 \rightarrow$ continuum
- Important for He-like ions
- Lowest excited state is 2^1S_0
Thermal Continuum Emission

T = 20 MK
Coronal Abundances
CHIANTI v. 5.2
Continuum Fractions
(CHIANTI v. 5.2)

Coronal abundances & Mazzotta et al. ionization equilibrium

T = 20 MK
- Free-bound
- Free-free

T = 40 MK
- Free-free
- Free-bound
Free-Bound Fraction

Coronal abundances

Free-bound fraction of total flux

Temperature ($10^6 \, ^\circ K$)

(b)
Line Emission
Hydrogen Atom

Balmer Series

Lyman Series

H β
H α
H γ

Ly α
Ly β
Ly γ
Ly δ
Hydrogen

Emission Lines
Quantum Numbers

- Principal quantum number
 \[n = 1, 2, 3, 4... \]
 \[K, L, M, N,... \]

- Orbital angular momentum
 \[l = 0, 1, 2, 3, 4, 5,... \]
 \[s, p, d, f, g, h,... \text{ where } l < n \]

- Electron spin
 \[s = \frac{1}{2} \]

- Projected angular momentum
 \[m_l = l, l - 1, l - 2,...-l \]

- Projected electron spin
 \[m_s = \pm \frac{1}{2} \]
Electron States

<table>
<thead>
<tr>
<th>Shell</th>
<th>K</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>l</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>s</td>
<td>p</td>
</tr>
<tr>
<td>m_l</td>
<td>0</td>
<td>-1 0 +1</td>
</tr>
<tr>
<td>m_s</td>
<td>±(1/2)</td>
<td>±(1/2) ±(1/2) ±(1/2)</td>
</tr>
<tr>
<td>m</td>
<td>±(1/2)</td>
<td>±(1/2) -1/2 -3/2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Shell</th>
<th>K</th>
<th>L_1</th>
<th>L_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>l</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Spectral Notation
Electron Configuration

- Electron Configuration = n l^N
 - n - principal quantum number
 - l – orbital angular momentum
 - N - number of electrons in given configuration

- H ground configuration: 1s (means 1s^1)

- Neutral Fe ground configuration
 1s^22s^22p^63s^23p^64s^24p^6
 "one s squared…"

- Neutral He & Fe XXV ground configuration
 1s^2
 "one s squared…"
Spectral Notation
Atomic or Ionic States

- Specification of ion state = \(2S+1L_J\)

 \(S = \) vector sum of all electron spins

 \(2S+1 = \) number of possible values of \(J\) (“multiplicity”)

 \(L = \) vector sum orbital angular momentum of all electrons

 \(0,1,2,3,4,5,...\)

 \(S, P, D, F, G, H,...\)

 \(J = \) vector sum angular momentum of atom

 \(= L + S\)

- Fe XXV ground state = \(1s^2 \ 1S_0\) (“one s squared singlet \(S\) zero”)

- Fe XXVI = \(1s \ 2S_{1/2}\) (“one s doublet \(S\) one half”)

- Fe XXVII = \(1s \ 2S_{3/2}\) (“one s doublet \(S\) three half”)
Atomic Data Bases

Available Codes
- CHIANTI (v. 5.2)
- ATOMDB - APEC/APED
 Astrophysics Plasma Emission Database and Code
 http://cxc.harvard.edu/atomdb
- MEKAL (Mewe-Kaastra-Liedahl) – semi-empirical
- SPEX (v. 2, Kaastra at sron.nl) – includes MEKAL

Parameters
- Temperature \(10^3 – 10^8\) K
- Photon wavelength/frequency/energy
- Density
- Abundances
- Ionization equilibrium
Data Bases Compared (2003)

2 – 35 Å

APED v. 1.10

SPEX

CHIANTI v. 4.0 Intensities
CHIANTI v. 5.2
(Landi et al., ApJSS, 2006, 162, 261)

☐ In SSW/packages or stand-alone
☐ GUI (type ch_ss in IDL)
☐ IDL command-line interface
☐ Great users guide!
☐ Now used in RHESSI OSPEX

CHIANTI is a collaborative project involving NRL (USA), RAL (UK), and the following Universities: College London (UK), of Cambridge (UK), George Mason (USA), and of Florence (Italy).
Flares
High Temperature Emissions

☐ Highest temperature plasmas tell most about the energy release process.

☐ Produced by
 Direct heating in corona
 and/or
 Indirect heating via nonthermal particles
 \(\rightarrow\) chromospheric evaporation
TRACE Spectral Bands

<table>
<thead>
<tr>
<th>Wavelength (Å)</th>
<th>Emission</th>
<th>Bandwidth (Å)</th>
<th>Temperature (K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>171</td>
<td>Fe IX/X</td>
<td>6.4</td>
<td>1.6–20 × 10⁵</td>
</tr>
<tr>
<td>195</td>
<td>Fe XII/XXIV</td>
<td>6.5</td>
<td>5.0–20 × 10⁵,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.1–2.6 × 10⁷</td>
</tr>
<tr>
<td>284</td>
<td>Fe XV</td>
<td>10.7</td>
<td>1.25–4.0 × 10⁶</td>
</tr>
<tr>
<td>1216</td>
<td>H I Lα</td>
<td>84</td>
<td>1.0–3.0 × 10⁴</td>
</tr>
<tr>
<td>1550</td>
<td>C IV</td>
<td>30</td>
<td>6.0–25 × 10⁴</td>
</tr>
<tr>
<td>1600</td>
<td>UV cont, C I, Fe II</td>
<td>275</td>
<td>4.0–10 × 10³</td>
</tr>
<tr>
<td>1700</td>
<td>Continuum</td>
<td>200</td>
<td>4.0–10 × 10³</td>
</tr>
<tr>
<td>5000</td>
<td>White light</td>
<td>broad</td>
<td>4.0–6.4 × 10³</td>
</tr>
</tbody>
</table>
TRACE

Temperature Coverage

$EM = 10^{44} \text{ cm}^{-3}$

TRACE & EIT
171 Å Filter Response

TRACE & EIT
195 Å Filter Response

RHESSI – EIT - TRACE Movie
X1.5 Flare on 21 April 2002

Click to show movie
High-Temperature Component

Bastille Day Flare
14 July 2007

A&B – hot spine
- T ~ 15 MK
- needs continuing energy input.
FIP Effect

- Magnetic and/or electric fields move ions but not neutrals.
- Ions dragged up into corona from chromosphere/T minimum/photosphere.
- Consequently, low FIP ions
 - FIP < 10 eV
 - Fe, Ni, K, Na, Ca, Al, Mg, Si, ...
 - Preferentially moved to corona
 - Coronal abundances
 - ~4 times photospheric
First Ionization Potential (FIP) Effect

Solar wind particles?

Abundance ratio $A_{\text{Cor}}/A_{\text{Phot}}$

First ionization potential [eV]

Feldman & Widing 2003
Feldman - Flares

- Chromospheric evaporation vs. in situ heating in the corona.
- Bright source at top of loop.
Fe Ionization-Recombination Equilibrium

Ions with Complete Outer Shells:
- Fe IX
- Fe XVII
- Fe XXV

are more stable, so higher fraction
Highly Ionized Iron - FeXXV

- Ion - Fe$^{+24}$
- Spectrum - FeXXV
- 2 electrons remaining in K shell
- “helium-like”
- Ground state
 - $1s^2$ (“one s squared”) 1S_0 (“singlet S zero”)
- Transitions between levels give emission lines

Fe-line Complex (~6.7 keV)

- **Fe XXV w line ("resonance line")**
 - Energy: 6.699 keV
 - Wavelength: 1.8508 Å
 - Transition: $1s^2 \, ^1S_0 - 1s2p \, ^1P_1$
 - Strongest line "quantum mechanically allowed"

- Many satellite lines at lower energy
- Series $1s - 2p$ in presence of other electrons
- From FeXXV – FeII Kα doublet
- FWHM ~ 0.1 keV
CHIANTI Spectrum
$T = 20$ MK Coronal Abundances

Temperature (MK) = 20.0000

Emission measure = 10^{46} cm$^{-3}$
CHIANTI Spectrum
Fe Line Complex near 6.7 keV
RHESSI Sensitivity

![Graph showing HESSI SHUTTER TRANSMISSION - subcoll 3 with curves labeled A0, A1, and A3 against energy (E(keV)) and transmission on a logarithmic scale.](Image)
RHESSI Imaging Spectroscopy
Caspi & Lin, 2005

\[T = 27.65 \times 10^6 \text{ K} \]
\[EM = 8.346 \times 10^{49} \text{ cm}^{-3} \]
\[\gamma = 2.70 \]
Fe-line Complex \(\sim 6.7 \text{ keV} \)
Fe/Ni-line Complex ~ 8 keV
Equivalent Width Definition

Area of emission line above continuum \(= 1.0 \times w \)
Fe & Fe-Ni Line Complexes
Equivalent Widths vs. Temperature

Fe complex at ~6.7 keV

Fe-Ni complex at ~8 keV
Fe Line Complexes
Equivalent Width vs. Temperature

30/31 May 2002

CHIANTI
Fe 4x photospheric

RHESSI data
A1 Attenuator state
Flux Ratio vs. Temperature
Caspi & Lin, 2005
Blue shifts – flare dynamics
SMM/BCS Spectrum
Fe XXV lines and satellites

Lemen et al. 1984 Gabriel 1972
SMM/BCS
Fe Spectra

- Solid: SMM/BCS data
- Dashed: Fe XXII-XXV line spectra
- Single temp. fits
- \(w - \) Fe XXV resonance line
- \(f(T,Z) = \frac{Z^4}{T} \)

Blue Shifts and Line Broadening

P78
SOLFLEX
Bragg Crystal Spectrometer

FeXXV

Blue Shifts and Line Broadening

SMM/BCS
CaXIX

Fig. 2.—Calcium spectra of solar flares. The ratio k/w is used to determine temperature.
Blue Shifts and Line Broadening

- Blue shift \rightarrow upflow velocity $100 - 300$ km s$^{-1}$
- Unshifted component always dominates – why?
- Thermal line broadening $\rightarrow T_e$
- Nonthermal line broadening $\rightarrow T_{Doppler}$
- $T_{Doppler} - T_e \rightarrow$ plasma turbulence.
Multithread Model

- Multithreads heated successively each on a time scale of 200 s.
- Explains lack of 100% blue-shifted component early in flare
- Shorter time scales lead to higher temperatures than observed.

![Graph](image-url)
Emission Measure Demystified

Column Emission Measure
\[\text{CEM} = \int n_e n_H \, dh \, [\text{cm}^{-5}] \]

Volume Emission Measure
\[\text{VEM} = \int n_e n_H \, dV \, [\text{cm}^{-3}] \]
\[\text{VEM} = \int_{A_{\text{source}}} \text{CEM} \, dA \]
\[\text{VEM} = A_{\text{source}} \, \text{CEM} \, \text{cm}^{-3} \]
Photon Flux at Earth

SI(CEM27) - specific intensity for CEM = 10^{27} cm^{-5}

Flux(CEM27, \lambda)

= I(\lambda) (A_{\text{detector}} / D^2) / A_{\text{detector}} \text{ photons cm}^{-2} \text{ s}^{-1} \text{ Å}^{-1}

= A_{\text{source}} SI(CEM27, \lambda) / D^2 \text{ photons cm}^{-2} \text{ s}^{-1} \text{ Å}^{-1}

= A_{\text{source}} 10^{27} SI(CEM1, \lambda) / D^2 \text{ photons cm}^{-2} \text{ s}^{-1} \text{ Å}^{-1}

(Note that the detector area cancels out.)

This corresponds to the flux from a CEM of 10^{27} cm^{-5} or a VEM of A_{\text{source}} 10^{27} cm^{-3}.
Column to Volume EM

VEM of $10^{49} \text{ cm}^{-3} \equiv \text{CEM} \times 10^{49} / (A_{\text{source}} 10^{27})$

$F_{\text{VEM}49}(\lambda) = F_{\text{CEM}27}(\lambda) \times 10^{49} / (A_{\text{source}} 10^{27})$

$= 10^{(49 - 27)} D^{-2} \text{SICEM}27(\lambda) \text{ photons cm}^{-2} \text{ s}^{-1} \text{ Å}^{-1}$

Source area cancels out.

$D = 1.5 \times 10^{13} \text{ cm, } D^2 = 2.25 \times 10^{26} \text{ cm}^2 = 10^{26.352} \text{ cm}^2$

$F_{\text{VEM}49}(\lambda) = 10^{(49 - 27 - 26.352)} \text{SICEM}27(\lambda) \text{ photons cm}^{-2} \text{ s}^{-1} \text{ Å}^{-1}$

$= 10^{-4.352} \text{SICEM}27(\lambda) \text{ photons cm}^{-2} \text{ s}^{-1} \text{ Å}^{-1}$

$= 4.45 \times 10^{-5} \text{SICEM}27(\lambda) \text{ photons cm}^{-2} \text{ s}^{-1} \text{ Å}^{-1}$

$= \text{SICEM}(27-4.352)(\lambda) \text{ photons cm}^{-2} \text{ s}^{-1} \text{ Å}^{-1}$

$= \text{SICEM} 22.648(\lambda) \text{ photons cm}^{-2} \text{ s}^{-1} \text{ Å}^{-1}$

SICEM22.648 is the specific intensity obtained from CHIANTI for CEM $= 10^{22.648} \text{ cm}^{-5}$.

DEM Analysis

Instrument response (dF/dEM) vs. Temperature

![Graph showing the relationship between instrument response and temperature. The graph includes different curves for various instruments like TRACE, SXT/Al12, SXT/Be, and HXT, each associated with specific wavelengths and temperature ranges.]
DEM Analysis

Normalized G(T) functions
DEM Analysis

Bastille Day event – 14 July 2000

Best fit double half-Gaussian DEM model at flare peak.

![Graph showing differential emission measure (DEM) against temperature (T) with fitted parameters.]

- $T = 10.87$ MK
- $\sigma_{T1} = 3.30$ MK
- $\sigma_{T2} = 9.01$ MK
- $E_0 = 1.53 \times 10^{51}$ cm$^{-3}$
- $E_M = 1.05 \times 10^{51}$ cm$^{-3}$
CORONAS-F
DEM for the active region and the flare 28.12.2001
Markov-Chain Monte Carlo (MCMC) DEM Analysis (Liwei Lin, SAO)

DEM $Q T^{-\alpha}$ (OSPEX)

MCMC analysis with uncertainties

July 26, 2002 23:08–23:16 UT RHESSI
DEM Analysis Limitations

Sylwester

AIA DEM for set: 10; Trange: [0.2 – 30.0] MK

Log DEM [cm⁻³ K⁻¹]

Log T [MK]
Deal or No Deal!
Thermal or Nonthermal

The standard mythology

- Time history
 - Thermal is slow and smooth
 - Nonthermal is fast and impulsive

- Spectrum
 - Thermal is exponential
 - Nonthermal is power-law
 - >50 keV is nonthermal

- Image
 - Thermal is coronal & extended
 - Nonthermal is footpoints & compact

Many exceptions!
Energy Dependent Time Delays
Aschwanden, 2006, preprint
Energy Dependent Time Delays
Aschwanden, 2006, preprint
Energy Dependent Time Delays
Aschwanden, 2006, preprint
Flare Energetics

- Sum energies of flare components:
 - thermal plasma
 - nonthermal electrons from X-rays
 - nonthermal ions from gamma-rays
 - turbulent and bulk motions

- Measure total radiated energy over all wavelengths
 - Increase in total solar irradiance
Radiated Energy Losses

- Energy radiated from thermal plasma over all wavelengths

\[L_{\text{rad}} = EM \cdot f_{\text{rad}}(T) \text{ ergs s}^{-1} \]

 - \(EM \) – emission measure
 - \(T \) - temperature
 - \(f_{\text{rad}}(T) \) - radiative loss function

- Total radiated energy from the flare plasma

\[L_{\text{total}} = \sum [L_{\text{rad}}(t) \cdot Dt] \text{ erg} \]

 Sum is over the duration of the flare
CHIANTI Radiative Loss Function

Radiative Energy Loss (erg cm3 s$^{-1}$)

- Ly alpha
- C, O, Si
- FeIX
- Fe XVII
- Coronal abundances
- Photospheric abundances
- Continuum

Mazzotta ionization equilibrium

Log T(K)

10$^{-23}$ 10$^{-22}$ 10$^{-21}$
Thermal Energy

Thermal energy of plasma

\[U_{th} = 3 \ n_e \ V \ k_B \ T = 3 \ k_B \ T \ [EM \ f \ V_{\text{apparent}}]^{1/2} \ \text{erg} \]

- \(n_e \) – electron density in \(\text{cm}^{-3} \)
- \(V \) – volume of emitting plasma in \(\text{cm}^3 \)
- \(V_{\text{apparent}} \) – volume from image
- \(f \) - filling factor (assumed to be 1)
- \(k_B \) – Boltzmann’s constant
- \(T \) – temperature (from GOES and RHESSI)
- \(EM = n_e^2 \ V \) – emission measure in \(\text{cm}^{-3} \) (from GOES and RHESSI)
- \(V = f \ V_{\text{apparent}} \sim f \ A^{3/2} \)
- \(A \) - source area from image
Increase in Total Solar Irradiance
X17 flare on 28 October 2003
CME vs Flare Energies
Dennis et al. 2006

- SXR-Emiting Plasma
- TSI Increase (SORCE)
- Peak Plasma Energy (Upeak)
- Ions
- Equipartition

28 October 2003
4 November 2003
21 April 2002
23 July 2002
SORCE / TIM

CME Kinetic Energy (10^30 ergs)
Total Energy (10^36 ergs)
Future Missions

- **Stereo – 2006**
 - Sun Earth Connection Coronal and Heliospheric Investigation (SECCHI)
 - Coronagraphs 1.1 – 15 R_{Sun}
 - EUV Imager – 2 x EIT spatial resolution, N x cadence

- **Solar B – 2006**
 - Solar Optical Telescope – magnetic fields with 0.2 arcsec resolution
 - Solar X-ray Telescope (SXT) – Yohkoh/ST-like – 1 arcsec. resolution
 - EUV Imaging Spectrometer (EIS) CDS-like images in TR & corona

- **GOES N - 2006**
 - SXI

- **Coronas – 2008**
 - SphinX – Solar Photometer in X-rays (0.5 – 15 keV, DE<190 eV)
 - EIT look alike

- **Solar Orbiter – 2017?**
 - Hard X-ray imager

- **Sentinels**
 - X-ray imager
 - Gamma-ray spectrometer

- **Indian 2nd solar spacecraft**
 - Soft X-ray imaging spectrometer (SoXIS)
Conclusions

Thermal radiation is useful!

- Morphology
- DEM
- Plasma turbulence from line broadening
- Bulk motions from line shifts
- Abundances
- Magnetic field in corona
- Total flare energy