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Single particle orbits

E and B fields are prescribed; particles
are “test particles”

Single particle orbits

F=q(E+vxB)

Set E = 0 (for now)

F=qvxB
Since F L v, no energy gain (F.v =0)
Particles orbit field line

mv¥/r=qvB

r=mv/qB (gyroradius)
® = v/r = gB/m (gyrofrequency)

Motion in a Uniform Magnetic Field
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Is this an electron or an ion?

Drifts
F=q(E+vxB)

Now let E # 0.
Relativistic transformation of E and B fields:
E'=y(E + (v/c) x B)
B'=y(B - (v/c) x E)
E?-B?=E?-B?
IfE < B (so that E2 — B2 < 00), transform to frame in which E = 0:
v=c (E x B)/B?
In this frame, we get simple gyromotion
So, in ‘lab’ frame, we get gyro motion, plus a drift, at speed

vp=c (E x B)/B?

E x B drift
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Drifts

Exercise:

What if E > B?

Drifts
vy =c (E x B)/B?
E is “equivalent electric field”
Examples:
(1) E is actual electric field: v, = ¢ (E x B)/ B2 (independent of sign
of q)
(2) Pressure gradient: gE = -Vp: v, = -cVp x B/qB? (dependent on
sign of q)

(3) Gravitational field: mg = qE: v, = (mc/q) g x B/B? (dependent on
m and sign of q)

Puzzle: in absence of magnetic field, particles subject to g accelerate
at the same rate and in the same direction; particles subject to E
accelerate in opposite directions at a rate which depends on their
mass. Why is the exact opposite true when a B is present?




Magnetic Mirroring

Adiabatic invariants
Slow change of ambient parameters: Action Ip dq (e.g.
Energy/frequency) is conserved
Apply this to gyromotion: E = (1/2) mv, % Q = eB/m
Then as B slowly changes, mv,%(B/m) = m?v,%B =p B is
conserved
As B increases, p, increases and so, to conserve energy, p;, must
decrease. This can be expressed as a mirror force
F =-(p,%2m) (VB/B),

This force causes particles to be trapped in loops with high field
strengths at the ends. Note that a magnetic compression also acts
as a reflecting wall; this will help us understand particle
acceleration later.

Plasma physics in principle

md?r/dt? = q; (E + [dr/dt] x B)

density p(r) and current density j(r)

Maxwell’s equations:
VE=p
VxB = (4n/c)(j + OE/ot)
“Lather, rinse, repeat”

Solve equations of motion with initial E and B:

Then use the resulting r; and dr;/dt to get charge

Then obtain the self-consistent E and B through

Plasma physics in principle

* Requires the solution of ~ 10?7 coupled
equations of motion

* Not a practical method!

MHD Equations

* Replace ~ 10?7 coupled equations of motion
by “averaged” fluid equations

* Neglect displacement current (plasma
responds very quickly to charge separation);
then body force

F=(1/c) j x B=(1/4m) (VxB) x B

Complete set of MHD Equations

Continuity: 0p/ot+ V.(pv) =0

Momentum: p dv/dt=-Vp + (1/4n) (VxB) x B - pg

Energy: ?? (can use polytrope: d(p/p?)/dt = 0)
Induction: OB/ot = Vx(v x B)

These are 4 equations for the 4 unknowns
(P, p. v, B)

Force — Free Fields

Equation of motion is
p dv/dt=-Vp + (1/4n) (VxB)xB
Define the plasma f§ = ratio of terms on RHS = p/(B%/8)
For typical solar corona,
p =2nkT ~2(10'9)(1.38 x 10-16)(107) ~ 10
B~ 100
—p~103
So second term on RHS dominates, and in steady-state j must
be very nearly parallel to B, i.e.
(VxB)xB=0

Force — Free Fields

(VxB)xB =0
Solutions:
(1) B =0 (trivial)
(2) VB =0 (current-free — “potential” field)
(3) Linear case: (VxB) = 0B
(4) Full case: (VxB) = o(r)B

Note that taking the divergence of
(VxB) = o(r)B
gives 0 =Vo.B + o V.B, so that B.Va =0, i.e., a is constant
on a field line.

Resistive Diffusion

Consider the Maxwell equation
VxE = - (1/c) 3B/dt,
together with Ohm’s law
Ejpeq = E + (v/c) x B =nj = (nc/4n) Vx B
Combined, these give:
OB/3t = Vx(v xB) - (Nc¥/4m) Vx(VxB),
ie.
0B/ot = Vx(v xB) + D V2B,
where D =nc/4n is the resistive diffusion coefficient.

Resistive Diffusion

&= Vx(v xB) + D V'B
ux through a given contour S is

¥
®=[l{B.dS.
The change in this flux is given by
da/dt = [fg @B/t - [ E. T,
cond term is due to Faraday
e field is generated du to cros
1d fluid motions, then, using Stokes™

where the

corem X
Iy E. 0= [fg VxE. dS = [l Vx(v <B). dS
we see that

db/de = [l [OB/ét - Vx(v xB)] dS = [Is D V2B dS.

Thus, if D=0, the field is frozen in to the plasma;
the flux through an arca stays constant as
the area deforms due to fluid motions. If,
on the other hand, D # 0, then the flux can
change (and as a result the energy in the
magnetic field can be released).




Resistive Diffusion

JB/ot=Vx(v xB)+ D V’B

The ratio of the two terms on the RHS:

|Vx(vxB)|/D |V?B| ~vL/D ~ 4nvLine?

is known as the magnetic Reynolds number S. For S >> 1,
the plasma is essentially diffusion-free, for S <<I the
dynamics are driven by resistive diffusion.

For a flare loop, V ~ V,, ~ 108 cm s, L ~ 10° cm and
N~ 107 T32~ 1017, This S ~ 10'4, and the plasma
should be almost perfectly frozen in.

The timescale for energy release should be of order L/D ~
4nL?mc? (this is of order the timescale for resistive
decay of current in an inductor of inductance L/c? and
resistance R =nL/L?=1/L). For solar values, this is
105 s ~ 107 years!

Summary to Date

» Solar loops are big (they have a high
inductance)

* Solar loops are good conductors

* Solar loops have a low ratio of gas to
magnetic pressure

So:

The plasma in solar loops is tied to the
magnetic field, and the motion of this field
determines the motion of the plasma
trapped on it

Also:
1t is very difficult to release energy from such a high-
conductivity, high-inductance system!

The Vlasov Equation

Note that we have still prescribed E and B. A
proper solution of the plasma equations
requires that E and B be obtained self-
consistently from the particle densities and
currents. The equation that accounts for
this is called the Viasov equation.

Phase-space Distribution Function

This is defined as the number of particles per unit
volume of space per unit volume of velocity
space:

At time t, number of particles in elementary volume
of space, with velocities in range v — v + dv =
f(r,v,t) &r d*v

f(r,v,t) has units cm? (cm s7!)3

The Boltzmann Equation

This equation expresses the fact that the net gain or
loss of particles in phase space is due to
collisional depletion:

DI/Dt = 8f/ét + v.Vf+a.V,f = (f/ét),

The Boltzmann equation takes into account the self-
consistent evolution of the E and B fields
through the appearance of the acceleration term
a.

The Vlasov Equation

This is a special case of the Boltzmann
equation, with no collisional depletion
term:

of/ot+v.Vf+aV =0,
ie.,
of/ot + v.VE+ (g/m) (E + (v/c) x B).V f=0.

The Electrostatic Vlasov Equation

Setting B = 0, we obtain, in one dimension for
simplicity, with q = - (electrons)
of/ot + v of/ox - (eE/m) of/ov = 0.
Perturb this around a uniform density,
equilibrium (E = 0) state f,=ng:
0g,/0t + v 0g,/0x - (eE,/m) 0g/ov = 0.

Also consider Poisson’s equation (V.E = 4np):

OE,/0x = 47p = - 4mne [g, dv

The Electrostatic Vlasov Equation

Now consider modes of the form
g~ exp(i[kx-ot])

Then the Vlasov equation becomes

-iog, + ivkg, — (eE,/m) dg,/dv =0

(o —kv)g, = (ieE,/m) dg /dv
and Poisson’s equation is
ikE, = - 4me Jg, dv
Combining,
ikE,= - i(47ne¥/m) E, Jdg /dv dv/(® —kv)
Simplifying, and defining the plasma frequency through o 2 =
4mne?/m,

1- (0,/k?) Jdg,/dv dv/(v — w/k) = 0.

This is the dispersion relation for electrostatic plasma waves.




The Electrostatic Vlasov Equation

Integrating by parts, we obtain an alternative
form

1- (0,/?) Jg, dv/(1 - kv/w)* = 0.

For a cold plasma, g, = 3(v), so that we obtain
1- (mpez/mz) =0,ie,0=0,

The Electrostatic Vlasov Equation

For a warm plasma, we expand the
denominator to get
1- (0, 0?) Igo dv[1 + 2kv/® + 3k2v¥w? +
...]=0
ie. 1- (0,/0?) [1 +3k2<v>Y/w? +...]1 =0,
where <v>2 = kyT/m is the average
thermal speed. This gives the
dispersion relation
o? = 0,2 +3 (kyT/m) k?
(cf. ©? = o2 + c?k? for EM waves)

Dispersion relations

Electrostatic waves in a warm plasma:
©? = 0,2+ 3 (kgT/m) k?

Ion-acoustic waves (includes motion of ions):

o = keg; c=[ky(T, + T;)/m;]"?
(note electrons effectively provide quasi-

neutrality)
Upper hybrid waves (includes B):
o’ = 0,7 + Q% Q, = eB/m,

Dispersion relations

Alfvén waves:
@ =K2V, Y[l + (V,2/c?)]
Magnetoacoustic waves:
o* - 02k%(c2 +V,2) + ¢ 2V, 2k4cos?0 = 0

(6 = angle of propagation to magnetic field)

etc., etc.

Two-Stream Instability

1- (0,02 fg, dv/(1 - kv/o) = 0.
For two streams,
g, = [3(v-U) + 3(v+U)],
so that
(0, 0-kUP) + (0, H0+kUP) = 1. g

This is a quadratic in %
0f = 2(w,2 + KU)o? - 2 0, KU + KU =0,
with solution
07 = (0,2 + KU £ o, (0,2 + 420212
There are solutions with ? negative and so
imaginary (exponentially growing)
solutions.

Two-Stream Instability

Distribution with two maxima (one at zero,
one at the velocity of the “beam”) is
susceptible to the two-stream instability.

This generates a large amplitude of plasma
waves and affects the energetics of the
particles.

Two-Stream Instability

This can also happen due to an “overtaking”
instability — fast particles arrive at a
location earlier than slower ones and so
create a local maximum in f.

Summary

High energy solar physics is concerned with
the physics of plasma, which is a highly
interacting system of particles and waves.

“Plasma physics is complicated” (J.C. Brown
& D.F. Smith, 1980)




