
1

Basic Plasma Physics Principles
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Outline
Single particle orbits; drifts

Magnetic mirroring
MHD Equations
Force-free fields

Resistive Diffusion
The Vlasov equation; plasma waves

Single particle orbits

E and B fields are prescribed; particles 
are “test particles”

Single particle orbits
F = q (E + v × B)

Set E = 0 (for now)

F = q v × B

Since F ⊥ v, no energy gain (F.v = 0)

Particles orbit field line

mv2/r = qvB

r = mv/qB (gyroradius)

ω = v/r = qB/m (gyrofrequency)

Motion in a Uniform Magnetic Field

Is this an electron or an ion?

Drifts
F = q (E + v × B)

Now let E ≠ 0.

Relativistic transformation of E and B fields:

E' = γ(E + (v/c) × B)

B' = γ(B – (v/c) × E)

E'2 – B'2 = E2 – B2

If E < B (so that E2 – B2 < 0), transform to frame in which E = 0:

v = c (E × B)/B2

In this frame, we get simple gyromotion

So, in ‘lab’ frame, we get gyro motion, plus a drift, at speed

vD = c (E × B)/B2

E × B drift
Drifts

Exercise:

What if E > B?

Drifts
vD = c (E × B)/B2

E is “equivalent electric field”

Examples:

(1) E is actual electric field: vD = c (E × B)/ B2 (independent of sign 
of q)

(2) Pressure gradient: qE = -∇p: vD = -c∇p × B/qB2 (dependent on 
sign of q)

(3) Gravitational field: mg = qE: vD = (mc/q) g × B/B2 (dependent on 
m and sign of q)

Puzzle: in absence of magnetic field, particles subject to g accelerate 
at the same rate and in the same direction; particles subject to E
accelerate in opposite directions at a rate which depends on their 
mass.  Why is the exact opposite true when a B is present?
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Magnetic Mirroring
Adiabatic invariants

Slow change of ambient parameters: Action ∫p dq (e.g. 
Energy/frequency) is conserved

Apply this to gyromotion: E = (1/2) mv⊥2; Ω = eB/m

Then as B slowly changes, mv⊥2/(B/m) = m2v⊥2/B = p⊥2/B is 
conserved

As B increases, p⊥ increases and so, to conserve energy,  p// must 
decrease.  This can be expressed as a mirror force

F = - (p⊥2/2m) (∇B/B),

This force causes particles to be trapped in loops with high field 
strengths at the ends.  Note that a magnetic compression also acts 
as a reflecting wall; this will help us understand particle 
acceleration later.

Plasma physics in principle

• Solve equations of motion with initial E and B:
md2ri/dt2 = qi (E + [dri/dt] × B)

• Then use the resulting ri and dri/dt to get charge 
density ρ(r) and current density j(r)

• Then obtain the self-consistent E and B through 
Maxwell’s equations:

∇.E = ρ
∇×B = (4π/c)(j + ∂E/∂t)

• “Lather, rinse, repeat”

Plasma physics in principle

• Requires the solution of ~ 1027 coupled 
equations of motion

• Not a practical method!

MHD Equations

• Replace ~ 1027 coupled equations of motion 
by “averaged” fluid equations

• Neglect displacement current (plasma 
responds very quickly to charge separation); 
then body force

F = (1/c) j × B = (1/4π) (∇×B) × B

Complete set of MHD Equations

Continuity: ∂ρ/∂t + ∇.(ρv) = 0
Momentum: ρ dv/dt = -∇p + (1/4π) (∇×B) × B - ρg
Energy: ?? (can use polytrope: d(p/ργ)/dt = 0)
Induction: ∂B/∂t = ∇×(v × B)

These are 4 equations for the 4 unknowns
(ρ, p, v, B)

Force – Free Fields
Equation of motion is

ρ dv/dt = - ∇p + (1/4π) (∇×B)×B
Define the plasma β = ratio of terms on RHS = p/(B2/8π)
For typical solar corona,

p = 2nkT ~ 2(1010)(1.38 × 10-16)(107) ~ 10
B ~ 100

→ β ~ 10-3

So second term on RHS dominates, and in steady-state j must 
be very nearly parallel to B, i.e.

(∇×B)×B ≅ 0

Force – Free Fields
(∇×B)×B = 0

Solutions:
(1) B = 0 (trivial)
(2) ∇×B = 0 (current-free – “potential” field)
(3) Linear case: (∇×B) = αB
(4) Full case: (∇×B) = α(r)B

Note that taking the divergence of 
(∇×B) = α(r)B

gives 0 = ∇α.B + α ∇.B, so that B.∇α = 0, i.e., α is constant 
on a field line.

Resistive Diffusion
Consider the Maxwell equation

∇×E = - (1/c) ∂B/∂t,
together with Ohm’s law

Elocal = E + (v/c) × B = ηj = (ηc/4π) ∇× B
Combined, these give:

∂B/∂t = ∇×(v ×B) - (ηc2/4π) ∇×(∇×B),
i.e.

∂B/∂t = ∇×(v ×B) + D ∇2B,
where D = ηc2/4π is the resistive diffusion coefficient.

Resistive Diffusion
∂B/∂t = ∇×(v ×B) + D ∇2B

The magnetic flux through a given contour S is 
given by

Φ = ∫∫S B. dS.
The change in this flux is given by

dΦ/dt = ∫∫S ∂B/∂t  - ∫Γ E. dΓ,
where the second term is due to Faraday’s law. If 

the electric field is generated due to cross-
field fluid motions, then, using Stokes’
theorem

∫Γ E. dΓ = ∫∫S ∇×E. dS = ∫∫S ∇×(v ×B). dS
we see that
dΦ/dt = ∫∫S [∂B/∂t - ∇×(v ×B)] dS = ∫∫S D ∇2B dS.

Thus, if D=0, the field is frozen in to the plasma; 
the flux through an area stays constant as 
the area deforms due to fluid motions.  If, 
on the other hand, D ≠ 0, then the flux can
change (and as a result the energy in the 
magnetic field can be released). 

dΓE

B

dS

Φ
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Resistive Diffusion
∂B/∂t = ∇×(v ×B) + D ∇2B

The ratio of the two terms on the RHS:
⏐∇×(v ×B)⏐/ D ⏐∇2B⏐ ~ vL/D ~ 4πvL/ηc2

is known as the magnetic Reynolds number S.  For S >> 1, 
the plasma is essentially diffusion-free, for S <<1 the 
dynamics are driven by resistive diffusion.

For a flare loop, V ~ VA ~ 108 cm s-1, L ~ 109 cm and
η ~ 10-7 T-3/2 ~ 10-17.  This S ~ 1014, and the plasma 
should be almost perfectly frozen in.

The timescale for energy release should be of order L2/D ~ 
4πL2/ηc2 (this is of order the timescale for resistive 
decay of current in an inductor of inductance L/c2 and 
resistance R = ηL/L2 = η/L).  For solar values, this is 
1015 s ~ 107 years!

Summary to Date
• Solar loops are big (they have a high 

inductance)
• Solar loops are good conductors
• Solar loops have a low ratio of gas to 

magnetic pressure β
So:
The plasma in solar loops is tied to the 

magnetic field, and the motion of this field 
determines the motion of the plasma 
trapped on it

Also:
It is very difficult to release energy from such a high-
conductivity, high-inductance system!

???

The Vlasov Equation
Note that we have still prescribed E and B.  A 

proper solution of the plasma equations 
requires that E and B be obtained self-
consistently from the particle densities and 
currents.  The equation that accounts for 
this is called the Vlasov equation.

Phase-space Distribution Function
This is defined as the number of particles per unit 

volume of space per unit volume of velocity 
space:

At time t, number of particles in elementary volume 
of space, with velocities in range v → v + dv = 
f(r,v,t) d3r d3v

f(r,v,t) has units cm-3 (cm s-1)-3

The Boltzmann Equation
This equation expresses the fact that the net gain or 

loss of particles in phase space is due to 
collisional depletion:

Df/Dt ≡ ∂f/∂t + v.∇f + a.∇vf = (∂f/∂t)c

The Boltzmann equation takes into account the self-
consistent evolution of the E and B fields 
through the appearance of the acceleration term 
a.

The Vlasov Equation
This is a special case of the Boltzmann

equation, with no collisional depletion 
term:

∂f/∂t + v.∇f + a.∇vf = 0,
i.e.,
∂f/∂t + v.∇f + (q/m) (E + (v/c) × B).∇vf = 0.

The Electrostatic Vlasov Equation
Setting B = 0, we obtain, in one dimension for 

simplicity, with q = -e (electrons)
∂f/∂t + v ∂f/∂x - (eE/m) ∂f/∂v = 0.

Perturb this around a uniform density, 
equilibrium (E = 0) state fo = ngo:
∂g1/∂t + v ∂g1/∂x - (eE1/m) ∂go/∂v = 0.

Also consider Poisson’s equation (∇.E = 4πρ):
∂E1/∂x = 4πρ = - 4πne ∫g1 dv

The Electrostatic Vlasov Equation
Now consider modes of the form

g ~ exp(i[kx-ωt])
Then the Vlasov equation becomes

-iωg1 + ivkg1 – (eE1/m) dgo/dv = 0
(ω – kv)g1 = (ieE1/m) dgo/dv

and Poisson’s equation is
ikE1 = - 4πne ∫g1 dv

Combining,
ikE1= - i(4πne2/m) E1 ∫dgo/dv dv/(ω – kv)

Simplifying, and defining the plasma frequency through ωpe
2 = 

4πne2/m,
1- (ωpe

2/k2) ∫dgo/dv dv/(v – ω/k) = 0.
This is the dispersion relation for electrostatic plasma waves.
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The Electrostatic Vlasov Equation
Integrating by parts, we obtain an alternative 

form
1- (ωpe

2/ω2) ∫go dv/(1 - kv/ω)2 = 0.

For a cold plasma, go = δ(v), so that we obtain
1- (ωpe

2/ω2) = 0, i.e., ω = ωpe

The Electrostatic Vlasov Equation
For a warm plasma, we expand the 

denominator to get
1- (ωpe

2/ω2) ∫go dv[1 + 2kv/ω + 3k2v2/ω2 + 
…] = 0

i.e. 1- (ωpe
2/ω2) [1 + 3k2<v>2/ω2 + …] = 0,

where <v>2 = kBT/m is the average 
thermal speed.  This gives the 
dispersion relation

ω2 = ωpe
2 + 3 (kBT/m) k2

(cf.ω2 = ωpe
2 + c2k2 for EM waves)

Dispersion relations

Electrostatic waves in a warm plasma:
ω2 = ωpe

2 + 3 (kBTe/m) k2

Ion-acoustic waves (includes motion of ions):
ω = kcs; cs=[kB(Te + Ti)/mi]1/2

(note electrons effectively provide quasi-
neutrality)

Upper hybrid waves (includes B):
ω2 = ωpe

2 + Ωe
2;Ωe = eB/me

Dispersion relations

Alfvén waves:
ω2 = k2VA

2/[1 + (VA
2/c2)]

Magnetoacoustic waves:
ω4 - ω2k2(cs

2 + VA
2) + cs

2VA
2k4cos2θ = 0

(θ = angle of propagation to magnetic field)

etc., etc.

Two-Stream Instability
1- (ωpe

2/ω2) ∫go dv/(1 - kv/ω)2 = 0.
For two streams,

go = [δ(v-U) + δ(v+U)],
so that

(ωpe
2/[ω-kU]2) + (ωpe

2/[ω+kU]2) = 1.

This is a quadratic in ω2:
ω4 – 2(ωpe

2 + k2U2)ω2 – 2 ωpe
2k2U2 + k4U4 = 0,

with solution
ω2 = (ωpe

2 + k2U2) ± ωpe (ωpe
2 + 4k2U2)1/2

There are solutions with ω2 negative and so 
imaginary (exponentially growing) 
solutions.

U-U

g

v

Two-Stream Instability
Distribution with two maxima (one at zero, 

one at the velocity of the “beam”) is 
susceptible to the two-stream instability.

This generates a large amplitude of plasma 
waves and affects the energetics of the 
particles.

Two-Stream Instability
This can also happen due to an “overtaking”

instability – fast particles arrive at a 
location earlier than slower ones and so 
create a local maximum in f.

Summary
High energy solar physics is concerned with 

the physics of plasma, which is a highly 
interacting system of particles and waves.

“Plasma physics is complicated” (J.C. Brown 
& D.F. Smith, 1980)


