Coronal Mass Ejections: An Introduction

Angelos Vourlidas Naval Research Laboratory

ESEARCH

Contributions from R.A. Howard T. Zurbuchen

Lecture Outline

- Related Lectures:
 - <u>Overview</u>: Space Weather, future instrumentation
 - <u>Basic Physics</u>: Intro to flares, MHD, Magnetic Reconnection, Plasma Physics
 - <u>CME/SEP Obs & Models</u>: SEPs, Coronal/IP Shocks
 - <u>Practicum</u>: In-situ measurements, Radio instrumentation
- Outline:
 - A short history
 - Theory of white light observations
 - Connections to the lower atmosphere & outer heliosphere
 - Open questions/research topics
 - Review

A Typical "Day" at the Office

- The (Visible) Solar Corona offers fascinating research.
- It is extremely active. The most spectacular activity are the

Coronal Mass Ejections (CMEs)

c2c3eit_planets.avi

Early Solar Wind Concepts

17th Century, Discussion of the Origin of Aurora Begins

– De Mairan (1731) related the return of the aurora to the return of sunspots after the Maunder Minimum

19th Century, Recognition of the Geomagnetic Field

- -September 1, 1859 White Light Flare
 - Lord Carrington was observing sunspots when he saw a white light flare
 - Immediately afterward, geomagnetic field was disturbed
 - •18 hrs later a major geomagnetic storm (2300 Km/s)

it was obvious that a disturbance propagating from the sun to earth had caused this aurora

Early Indications for Solar Eruptions

•1930s, Chapman & Ferraro proposed an <u>intermittent</u> solar wind that occurred only during active times.
•1940, Pettit studied several filament eruptions/surges
•1969, type-IIs from Culgora

However, until the late 1960's the visible corona was considered a stable, gradually evolving (...and boring) region of the sun.

First CME Detection

Space-borne Coronagraphs

	Field of View (Rs)	Spatial Resolution (")	CMEs	Key Results
OSO-7 (1971-73)	3 – 10	180	30	1 st detection
Skylab (1973-74)	2 – 6	5	100	Beauty, Importance
Solwind (1979-85)	2.5 – 10	180	~1000s	Statistics, Halo, Shocks
SMM (1980, 84-89)	1.6 – 6	30	~1000s	3-part, Statistics
LASCO (1995 -)	1.1 – 32	5.6 - 60	>10,000	Initiation, Fluxrope, Geo- effects
STEREO/SECCHI (July 2006)	1.5 – Earth	8 – 270	?	?

See corona_history.pdf for more info on the history of CME observations

A "typical" CME

What is recorded in the images?

- Observations are almost always made in visible light
 - Sometimes in Ha (6535A), "Green line" (FeXIV, 5303A), "red line" (FeX)
- Coronagraphs record photospheric light reflected by electrons in the corona
- Emission process is Thomson scattering
- Emission is optically thin and polarized
- Our discussion applies to the quiet corona & CMEs

See corona_review.pdf for more info on the quiet corona

Emission Geometry & Definitions

- Total Brightness:
 B = B_t + B_r
- Polarized Brightness:
 pB = B_t B_r

For complete treatment, see Billings (1966)

Emission Fundamentals (2)

- Polarization of the signal:
 - Weakens with angular distance from plane of maximum scattering
 - Remains constant with radial distance

Impact distance

How do we interpret the images?

- A feature can be <u>bright</u> because:
 - It is extended ALONG the line of sight (many electrons)
 - It has mass (many electrons)
 - It is close to the plane of max. scattering
 - Line emission inside instrument bandpass (e.g., Ha)
- A feature is polarized because:
 - It is close to the plane of max. scattering
 - AND is very narrow
- A feature disappears because:
 - It was carried away (in a CME)
 - It was pushed AWAY from plane of max. scattering

0

From raw to beautiful images

- Raw images contain much more than the corona:
 - Stray light
 - F-corona (reflection from IP dust)
 - Stars/planets
 - Instrumental effects (i.e., vignetting)

Raw C3 Image

Calibrated C3 Image (Difference)

CME Analysis Tools

CMEs are highly dynamic events. To analyze them, we need their time-series → movies

- Most common analysis tasks:
 - Height-time plots (ht-plots) \rightarrow velocity, acceleration
 - Size & position measurements
 - Mass/energetics → mass, density, kinetic/potential energy
- Analysis software available in SolarSoft (i.e., LASCO tree)

Height-Time Plots

Size/Position Measurements

(Excess) Mass & Energy

- Preevent image is subtracted
- Need CALIBRATED images (gr/pix)
- Sum over appropriate features

Mass Calculation Methods

"Typical" C3 Mass Image

- Several ways to obtain a "mass" for an event.
- The choice depends on the objectives:
 - After the whole event?
 - After specific features (i.e., core)?
 - Flow measurements?

What do we know about CMEs?

- 10,000s of CMEs have been observed and measured.
- We know quite a lot about their properties:
 - Rates
 - Speeds
 - Masses/Energies
 - Association with type-II, flares, solar energetic particles (SEPs)

CME Rates

Comparison of CME Rate with Sunspot Number

2nd SPD Summer School

CME Properties (speed, width)

Projected Speed

Projected Width

Solar Cycle Variation of Speed

2nd SPD Summer School

Acceleration of CMEs

Tendency for Slow CMEs to Accelerate and Fast CMEs to Decelerate

Evolution of CME Origin

2nd SPD Summer School

CME Mass & Energy Distributions

2nd SPD Summer School

"Typical" CME Morphologies

- Fluxrope (used to be known as 3-part CME)
- Halo
- Streamer Blowout

0

Examples of Flux Rope CMEs

0

"Typical" CME Morphologies

- Fluxrope (used to be known as 3-part CME)
- Halo
- Streamer Blowout

Frontside vs Backside Halos

• Morphology depends on projection, coronal structure

Halo CME 6 Jan 1997

CMEs and the Lower Corona

Activity in active regions correlated with the CME:

- EIT Waves
- Flares
- Filaments
- Brightenings/loop motions

These connections became obvious thanks to the joint use of EUV imager / coronagraph in SOHO

Flares & CMEs

- FACT: CMEs & Flares occur together very frequently.
- **QUESTION:** Do flares cause CMEs or vice versa?
 - Both are signs of energy release & reconfiguration in the corona.

	Size	Time	Energy (ergs)	Particles	Filaments	Ejecta
CMEs	Global	Gradual	~10 ³²	Yes	Yes	Large
Flares	Local	Impulsive	~10 ³²	Yes	Yes	Small

But <u>impulsive</u> CMEs are associated with flares And <u>gradual</u> flares are associated with CMEs.

CMEs and Coronal Waves

- The EIT wave might be the "ground track" of the CME. With it, we trace the:
 - Expansion of the CME
 - -Interactions with distant regions
 - Relation between CME & flare

CMEs & Filaments

- Filaments eruptions are the strongest CME signatures in the low corona.
- Almost all filaments erupt
- The majority of the mass drains down.
- QUESTIONS:
 - Do ALL CMEs contain a filament?
 - Do filaments play a role in the initiation or propagation?
 - Are Streamer-Blowout CMEs special?

- Waves in the chromosphere: (likely) flare-driven.
- Waves(?) in the photosphere: flare-driven
- Photospheric magnetic flux changes: inconclusive

So far, there is no ROBUST evidence of DIRECT CME signatures below the corona. Why not ?

CMEs and the Heliosphere (1)

- **CME in the heliosphere = ICME** (*interplanetary CME*)
- CME plasma are probed directly by <u>in-situ probes</u>.
 - Magnetic field (magnitude, direction)
 - Plasma density, composition, temperature
 - Particle energies (electron, protons)
- How do CMEs affect (are affected by) the heliosphere?
 - CMEs propagate through the
 - solar wind (fast, slow regions)
 - interplanetary magnetic field (parker spiral)
 - But they remain distinct from the solar wind.

More in

- 1. "in-situ Measurements: Particles & Fields" (Cohen)
- 2. "Space Weather" (Raeder)
- 3. "SEPs" (Cohen)

CMEs and the Heliosphere (2)

• In-situ measurements

The far-reaching CMEs

- CMEs have been detected to the edges of the solar system (by the Voyagers).
- CMEs shield against from cosmic rays
- CMEs responsible for auroras, geomagnetic storms → space weather.

What is the relation of CMEs to ICMEs ?

We rely on models to fill this gapSTEREO will obtain imaging observations.

Outstanding Issues

- Initiation
 - Observations cannot determine the mechanism (currently).
 - But there are only a few viable models (i.e., breakout, flux emergence). All rely on reconnection processes.
- Propagation
 - CME interplanetary evolution is (largely) unknown

More in 1. "Reconnection" (Forbes)

Some open questions

- Initiation
 - How are CMEs initiated and why?
 - How do they affect the large scale corona?
 - What is the 3D structure of CMEs?
 - What is the relation between CMEs and flares/filaments?
 - Can we predict CMEs?
- Propagation
 - What is the role of the solar wind?
 - Where do shocks develop?
 - Can CMEs accelerate high energy particles?
 - Do CMEs interact?
 - What is the magnetic structure of CMEs?

Review (1)

- CME is
 - The ejection of a large-scale, organized coronal structure from the corona that escapes into the heliosphere
- A typical CME has
 - Width of ~45°, mass of ~10¹⁵ gr, speed of ~500 km/s, and a fluxrope structure
- Things to remember
 - The emission is optically thin, the structure along the line of sight is unknown
 - Most of the measured quantities are projected on the sky plane.
 - The morphology depends on projection effects, launch longitude

Review (2)

- Generally, fast CMEs are associated with flares, slower CMEs with filaments
- CMEs are coronal phenomena
 - Little, if any, effects in the chromosphere or below
- CMEs involve the ejection of plasma & magnetic field
- CMEs can accelerate/transport energetic particles
- CMEs cause the strongest geomagnetic storms
- The study of CMEs involves many areas of solar physics
 - Physical processes (i.e., storage and release of mag. energy)
 - Properties of coronal plasma, heliosphere
 - Shock generation and particle acceleration
 - Interaction with Earth's environment (magnetosphere, ionosphere)

Backup Slides

A Key Observation

Culgoora 80MHz Radioheliograph 1 March 1969 Moving Type IV "Westward-Ho"

Heliospheric Plasma Sheet "Ballerina Skirt"

A CME "seen" in-situ

From Zurbuchen & Richardson (2004)

First CME from Skylab 10 June 1973

2nd SPD Summer School

0

First Halo-CME Detection

27 NOV. '79 "HALO" CORONAL TRANSIENT (pre-event image subtracted, contours enhanced)

2nd SPD Summer School

3-Part CME

Emission Fundamentals-Details

 2^n

$$B = K_{t}(x) + K_{r}(x) = K(x) = C \int_{x}^{\infty} N(r) \left[\left(2 - \frac{x^{2}}{r^{2}} \right) \mathscr{A}(r) + \frac{x^{2}}{r^{2}} \mathscr{B}(r) \right] \frac{rdr}{\sqrt{r^{2} - x^{2}}} (2)$$
and
$$B = K_{t}(x) - K_{r}(x) = C \int_{x}^{\infty} N(r) [\mathscr{A}(r) - \mathscr{B}(r)] \frac{x^{2}dr}{r\sqrt{r^{2} - x^{2}}} (3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

Lyot Coronagraph

- During the 1930s, Bernard Lyot analyzed the sources of scattered light and developed the "internally occulted" coronagraph
- The "externally occulted" coronagraph extension by Jack Evans in the 1960s, putting a single disk in front of the objective lens
- Triple disk external occulter assembly added by Newkirk and Bohlin achieved 10⁻⁶ suppression
- Purcell and Koomen suggested that a serrated external achieves the same apodization of the diffracted light as the triple disk

Electron Scattering

 LASCO (C2/C3) observes photospheric light scattered by free electrons in the Thomson

$$I_{t} = I_{o} \frac{N_{e} \pi \sigma}{2} [(1-u)C + uD]$$
$$I_{t} - I_{r} = I_{o} \frac{N_{e} \pi \sigma}{2} \sin^{2} \chi [(1-u)A + uB]$$

- The scattering is in a plane perpendicular to the incident photon and can be divided into two components.
- The observed intensity is the integration along the line of sight.

2nd SPD Summer School

Solar Corona

- The inner corona
 - The region immediately beyond the disk of the sun that rotates rigidly with the sun.
 - It is dominated by magnetic energy and extends to approximately 2 solar radii. Magnetic structures are very complicated.
 - Electron density is falling very rapidly (r⁻⁸/r⁻¹⁰)
- The outer corona
 - The properties in this region are a mixture between the solar wind and the corona.
 - Electron density still is dropping faster than the solar wind (r⁻⁴) but not as fast as closer to the sun.
 - The magnetic field direction is approximately radial.