

HXR Microflares, Quiet Sun & Flare Statistics

Iain Hannah¹ & **Steven Christe²** University of Glasgow, UK NASA/GSFC, USA

Science & Technology Facilities Council

email: iain@astro.gla.ac.uk

Introduction & Motivation

- We are interested in energy release in the solar atmosphere
 - HXR prime diagnostic of accelerated electrons
- Microflares (small, A/B-GOES Class flares) are useful as
 - 1. "Simple proto-types" of processes in large flares
 - i.e. single impulsive burst of energy release
 - i.e few loops of heated material instead of arcade
 - 2. Limits and scaling of energy release processes
 - How small can an active region flare be?
 - Is there a different process for smallest events ("nanoflare")?
 - Is non-active region energy release similar to active region flares?
- N.B.
 - Microflare = small active region flare (< C-Class)
 - Parker nanoflare = basic unit of localised impulsive energy release
 - Nanoflare = brightening (< microflare) close to the observational limit so you don't really know what it is

RHESSI Microflare Locations

- All are associated with Active Regions
 - >25,000, sub C-Class flares between 2002 to 2007.
 - Down to the smallest A1 GOES flares are all active region phenomena

Microflare Spatial Structure

- Like large flares with HXR footpoints, then hot SXR/EUV loops
- Micro energy content but not necessarily small
 - On average the thermal loop length is about 30"

RHESSI & XRT: Hannah et al. 2008 A&A

- Pre-RHESSI: >13 keV, crude energy bins but low background
- RHESSI: >3keV, far better energy resolution
 - Allows us to investigate energetics but difficulties due to uncertainties in the transition of thermal to non-thermal close to spectral features

• Even tiny A-Class events accelerate electrons and have associated radio emission (outward energetic particles)

"Non-flaring" Active Regions

- Hot emission from non-flaring active regions
 - i.e. RHESSI: McTiernan 2009 ApJ, SphinX: Sylwester et al. 2010
- Is the source of this very faint microflares?
 - How small can an active region microflare be?
 - SphinX: small AR flares at least an order of magnitude fainter than GOES A1-Class (Sylwester et al. 2009)

Quiet Sun HXR Emission

- Is there particle acceleration outside of active regions?
 - Energy release related to SXR/EUV bright points, jets, coronal heating?

RHESSI Quiet Sun HXR Limits

- Only upper limits to emission from RHESSI
 - Gives constraints to possible thermal and non-thermal populations

2σ upper limits in comparison to previous limits

Comparison to previous observations of QS and Non-flaring AR thermal emission

Relationship of different flare sizes?

- Need to statistically study events on different scales
 - Context for individual events
 - Investigate limits and scaling
- Energy frequency distribution is often sought after
 - Coronal heating: is $\alpha > 2$?
- Although is such an energy comparison practical?
 - Are EUV "nanoflares" just physically smaller AR flares?
 - Are we just demonstrating the different biases of each instrument and survey?

Hannah et al. 2010 SSRv

- Is the physics of active region flaring energy release the same as non-active region release?
 - How small can a microflare be?
 - Need higher sensitivity, higher temporal and energy resolution
- Multi-messenger microflare observations crucial for using them as "simple proto-types"
 - Need to accurately know where each instrument is pointing
 - Annoying to manually align an event, impractical for >thousands
 - Although how simple are these events?
- For context/statistical studies need instruments that can robustly observe large to small (or no) flares
 - Must be able to minimise (or understand very well) the instrumental bias