**Imagine having to work with large numbers such as one million or 10 billion and
constantly having to write down the entire number. It could get tiresome writing
all those zeros! The best way to deal with large numbers is to abbreviate them
using powers of ten. What exactly does that mean?**

**Take the example 1.0 x 10**^{6}**. To convert from the abbreviated powers of ten to
the full number, look at the superscript value first (6 in this example). Then take
the number value, in this case 1.0, and move the decimal point to the right the
same number of spaces as the superscript value, filling in the new spaces with
zeros. 1.0 x 10**^{6}** is now equal to 1,000,000! If the superscript value happens to be
negative (for the same rules apply to tiny numbers), move the decimal place to
the left.**

**Remember, the number value does not always have to be equal to 1.0. When a
number is 1.0 x 10 raised to a value, the "1.0 x" part is often assumed rather
than written down. Examples are listed in the table below.**

Abbreviation | Number |

1.0 x 10^{-5} | .00001 |

2.5 x 10^{-3} | .0025 |

1.0 x 10^{2} | 100 |

3.4 x 10^{2} | 340 |

1.0 x 10^{5} | 100,000 |

10^{5} | 100,000 |

6.0 x 10^{6} | 6,000,000 |

** Next: Why Study Solar Flares?
**