
Visibility of an Albedo Source

1. The Image Plane

In the image (x,y) plane, it is well known that a good approximation for the scattered
radiation (the albedo patch) from a point-source primary flare is given by a Moffat function:

F (x, y) = Ah3(h2 + x2 + y2)−3/2

where A is the flux of the albedo source, h is the height of the primary unit point source,
and x,y are the sky plane coordinates relative to the primary source.

The above formula, being symmetric in x and y, is valid only when the flare is at Sun
center, and requires modification for displacements from sun center. The most important
effect of such a displacement is fore-shortening – the contours of constant albedo brightness
become ellipses. The second important effect is that the centers of the primary and albedo
sources no longer coincide. In the present analyis, we ignore this shift, and take the center
of the (x,y) coordinate to be at the geometric center of the (elliptical) albedo patch.

Let the angles of the local vertical vector relative to the z (Sun-earth) direction be α and
β. For a Sun-centered albedo patch, α = β = 0, and their cosines both equal 1.

For a displacement in the x direction, cos(β) = 1 and |cos(α)| < 1

The albedo patch contours are then given by

F (x, y) = Ah3(h2 + (x sec(α))2 + y2)−3/2

Note that the flux of the albedo patch is assumed to be unchanged, given our hypothesis
of perfectly isotropic scattering.

For a displacement of the albedo patch from the x axis by a CCW angle φ, the x and y
coordinates must be rotated:

ξ = x cos(φ) − y sin(φ), η = y cos(φ) + x sin(φ)

So that
F (x, y) = Ah3(h2 + (ξ sec(α))2 + η2)−3/2

2. The Fourier Plane

To compute the visibility G(u,v) of the image in the Fourier (u,v) plane, we must perform
the Fourier transform:

G(u, v) =

∫

∞

∞

∫

∞

∞

ei2π(ux+vy)F (x, y) dxdy



From tables of Hankel transforms it may be seen that Fourier transform of a symmetric
Moffat function is an exponential, but to exploit this fact and use it in the current context,
we must first do a rotation in the (u,v) plane and do a dilation in the u direction.

Since the quantity (ux+vy) is essentially a dot product of the (u.v) vector with the (x,y)
vector,

ux + vy = u′ξ + v′η

where u’ and v’ are the rotated coordinates

u′ = u cos(φ) − v sin(φ), v′ = v cos(φ) + u sin(φ)

(This may be verified explicitly using straightforward algebra.)
Then we can use the fact that rotation leaves the unit area unchanged (dx dy = dξ dη),
to get the form in the rotated plane:

G(u, v) =

∫

∞

∞

∫
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ei2π(u′ξ+v′η)F (x, y) dξ dη

where F is expressed in terms of (ξ, η).

Because there is a factor sec(α) multiplying ξ in the Moffat function, a further transfor-
mation must be made. Let w = u′ cos(α) and ξ′ = ξ sec(α). Then dξ = cos(α) dξ′

Finally, we get a transform of a symmetric Moffat function:

G(u, v) = cos(α)

∫

∞
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ei2π(w ξ′+v′ η)F2 dξ′ dη

where

F2 = Ah3(h2 + (ξ′)2 + η2)−3/2

The transform of a symmetric, unit Moffat function is exp(−kh) where k =
√

(u2 + v2),
so we obtain the result:

G(u, v) = A cos(α)exp(−h
√

(u′ cos(α))2 + v′2)


