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Abstract

The High Energy Solar Spectroscopic Imager (HESSI) will use rotational
modulation synthesis for imaging hard X-ray and gamma-ray flares with
spatial resolution of 2.3"” and spectral resolution of ~ 1 keV. Like the
Yohkoh/HXT hard X-ray telescope, HESSI relies on Fourier methods to
produce images, but HESSI has many more sampled points in the Fourier
plane, and is expected to produce higher-resolution maps with greater dy-
namic range.

We summarize the methods to be used for HESSI imaging, touching on cru-
cial details of modulation such as the Calibrated Event List, and describing
the Back Projection method. Beyond these, we outline four basic tools for
image reconstruction: CLEAN, MEM, PIXONS, and Forward Fitting, with
simulated examples of each.



1 Introduction

The only practical method of obtaining ~arc-second angular resolution in
hard X-rays and gamma-rays within the cost, mass, and launch constraints
of a small satellite is to use Fourier-transform imaging. (See Prince et al.
1988 for a review of imaging techniques.) One of the most powerful of the
Fourier family techniques is rotational modulation synthesis, first proposed
by Mertz (1967) and implemented by Schnopper et al. (1968). Rotating
Modulation Collimators (RMC) were first constructed and used for solar
flare X-ray imaging by the Japanese Hinotori telescope (Makashima et al.
1977, Ohki et al. 1982, Enome 1982), with angular resolution of 28" in the
20-40 keV energy range. The next hard x-ray solar imager was the Hard
X-ray Imaging Spectrometer (HXIS), not a Fourier-transform imager, but
important for developments in the ~ 3 — 30 keV range (Van Beek et al.
1980). A later Japanese telescope, HXT, on the Yohkoh satellite, used non-
rotating Fourier synthesis with angular resolution of ~ 8" in the 20-100 keV
energy range (Kosugi et al. 1991). A prototype of a rotation modulation
telescope—the High Energy Imaging Device (HEIDI)— was flown in 1993
on a balloon, without successful flare imaging, but with a definitive test of
a novel solar aspect system (SAS), proving 0.5-arcsecond performance at
balloon altitudes. (Crannell et al. 1994)

The High Energy Solar Spectroscopic Imager (HESSI) also uses rotational
modulation synthesis imaging. With a launch shortly after the peak of flare
activity, HESSI has been designed to image hard X-ray and gamma-ray
flares with spatial resolution of 2.3" and spectral resolution of ~ 1 keV (Lin
et al. 1993, 1994, 1998, Holman et al. 1997). We summarize briefly the
HESSI instrumentation used to exploit Fourier synthesis imaging.

1.1 The HESSI Imager

HESSI uses nine bi-grid collimators, each consisting of a pair of widely sep-
arated grids in front of an X-ray/gamma-ray detector. Each grid consists of
a planar array of equally-spaced, X-ray-opaque slats separated by transpar-
ent slits. The slits of each pair of grids are parallel to each other and their
pitches (p) are identical, so the transmission through the grid pair depends
on the direction of the incident X-rays. (See Figure 1.1) For slits and slats
of equal width, the transmission is modulated from zero to 50% and back to
zero for a change in source angle to collimator axis (orthogonal to the slits)
of p/L where L is the separation between grids (1550 mm). The angular res-
olution is then defined as p/(2L). For HESSI, the transmission of the source



photons through the grids is modulated by the rotation of the spacecraft
at about 15 revolutions per minute. The detector records the arrival time
and energy of individual photons from anywhere on the Sun, allowing the
modulated counting rate to be determined as a function of rotation angle.

Note that the detectors have no spatial resolution and hence have been
optimized for high sensitivity and energy resolution. The nine segmented
Ge detectors (GeDs), one behind each RMC, detect photons from ~3 keV
to 15 MeV. The GeDs are cooled to ~ 75 K by a space-qualified long-life
mechanical cryocooler. As the spacecraft rotates, the RMCs convert the
spatial information from the source into temporal modulation of the photon
counting rates of the GeDs. The instrument electronics amplify, shape, and
digitize the GeD signals, provide power, format the data, and interface to
the spacecraft electronics.

HESSI exploits one of the fundamental efficiencies of Fourier imaging: pre-
cision spacecraft pointing can be traded for exact knowledge of pointing.
With a Fourier imager, it is not necessary to stabilize the spin axis to any
better than a few arc minutes, as long as the system gives sufficiently precise
and high-bandwidth pointing information. For HESSI, this information is
provided by the solar aspect system (SAS) — a heritage of the HEIDI SAS
— and the roll angle system (RAS). The SAS consists of 3 linear diode arrays
on which the full solar image is projected. The solar limb is determined at 6
positions every 10 ms, giving pitch and yaw to ~ 1.5”. The RAS consists of
a star-imaging linear photodiode, providing roll angle to 2.7" every minute.

1.2 Expected Imaging Capabilities

In 2-3 years of mission life, HESSI is expected to obtain observations of tens
of thousands of microflares, thousands of hard x-ray flares, and of order a
hundred gamma-ray line flares. Detected photons will be tagged with 1 us
time resolution up to a rate of ~ 10° photons/s. The intense 3-150 keV X-
ray fluxes that usually accompany large gamma-ray line flares are absorbed
by the front segment of the detectors, so the rear segment will always count
at moderate rates. This is essential for gamma-ray line measurements with
optimal spectral resolution and high throughput.

Except in extreme circumstances, every photon is stored and then sent down.
If an extended, extremely active period occurs, a decimation scheme is en-
abled which digitally decimates the incoming photon event stream, so that
only a fraction of the events below an energy threshold get sent to telemetry.
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Both the fraction and the energy threshold are programmable. There are
decimators for both the front and the rear segments of the detectors. The
front decimator thresholds are controlled by software to avoid overflowing
the spacecraft recorders, and the rear decimators can be controlled from the
ground to limit the background rate.

In addition to decimation, there are mechanical attenuators, which if re-
quired, reduce the flux below the saturation level of ~ 50,000 events/s.
Together, decimation and attenuation provide minimum loss of imaging and
no loss in gamma-ray spectroscopy.

It is expected that HESSI will provide detailed imaging spectroscopy in each
of ten energy intervals with ~ 2s time resolution for one event every ~ 5 days
with ~ 10* counts s~! above 15 keV. With lower energy resolution (~ 100
keV), crude imaging information could be obtained in tens of milliseconds.
HESSI provides spatial resolution of 2.3 arcseconds at X-ray energies below
~ 200 keV, 7 arcseconds to 400 keV, and 36 arcseconds for gamma-ray lines
and continuum above 1 MeV.

2 Modulation Principles

HESSI, like all RMCs, relies on temporal modulation by its grids to pro-
vide spatial information about incoming photons. The imaging process may
be thought of as a superposition of elemental processes of photon passage
through a sub-collimator. Since the time of arrival of each photon is de-
termined to 1 us, and the aspect system determines the pointing of the
telescope with arcsecond accuracy, the known geometry of the subcollima-
tors provides well-defined information about the photon’s origin.

2.1 One-dimensional Modulation

We illustrate how this works by considering a subcollimator with two iden-
tical grids, each parallel to the x,y plane, whose slats are, at a given instant,
parallel to the y axis, and whose spin lies parallel to the z axis. Let a photon
travelling in the x-z plane strike the plane of the front grid. The incidence
phase (measured in the x direction) of the photon relative to the slats of the
front grid may be considered to be random since all photons arriving from
a single point at infinity lie on parallel lines with a continuum of phases,
and since the detectors have no spatial resolution, the modulation profile is
found by integrating over all incidence phases.



The probability of passage of the photon through the front grid is propor-
tional to the projected area of the slits of that grid, as viewed from the
direction of the photon. For an ideal grid of finite thickness and infinite
extent, this value is independent of the y direction, but dependent on the
photon direction in a fashion characteristic of the grid thickness and the
slit-slat ratio.

In the case of a single thin grid with equal slits and slats, the projected
area, plotted as a function of incidence phase, is a periodic, rectangular
waveform with equally long maxima and minima. For a thick grid, there is
internal shadowing by the sides of the slats, and the projected open areas
are reduced from the thin case, so the area waveform is still periodic, but
with maxima and minima of unequal lengths. In the case of HESSI grids,
the projected slit-slat ratios are optimized to have equal projected slit and
slat widths at incidence angles of about 600”. The aspect ratio of the slats
(x-width/z-thickness) is 1:50. For photons with nearly normal incidence,
the effective slit/pitch ratio is about 0.6, and for photons incident at angles
of 415" in the x-z plane, the effective slit/pitch ratio after shadowing is close
to 1:2.

After photons pass through the front grid, they have a finite probability
of passing through the rear grid. If the incidence angle is less than about
900", the probability of incidence on the rear grid is almost unity. Only
for photons entering at angles of greater than 1 degree does this probability
become significantly less than 1 due to non-overlap of the front and rear
grid areas. The passage of the photon through the second grid is, again,
dependent on its direction in exactly in the same way as for the front grid.
The fraction of projected open area for an incident photon is therefore the
convolution of the transmission functions of each grid. It is easy to verify
that in the ideal case, this is a triangle waveform. For thin grids, the triangle
function has pointed peaks and valleys. But if the projected slit-slat ratio is
larger or smaller than 1, the valleys of the waveforms will be flattened. The
sharp corners of the profile’s peaks are also rounded by partial transmission
effects. Figure 2 shows examples of the equivalent area function for various
slit/pitch ratios, and also for (over-simplified) energy-dependent effects that
smooth the corners of the profile.

Tt is useful and efficient to characterize the subcollimator transmission func-
tions in terms of the first few harmonics. For slit/pitch ratios equal to 1/2,
and for energies low enough that the slats are opaque (E < 100 keV), and for
energies high enough that diffraction effects are negligible (E > 6 keV), the
effective subcollimator area function is approximately a triangle waveform,



RELATIVE EFFECTIVE AREA VSINCIDENCE ANGLE

1.0
0.75 SLIT/PITCH=0.6 E=50 KeV DETECTOR 3
0.50
025 |
0.0 \ \ \
4 -2 0 2 4
Incidence Angle (Units of p/2L)
1.0
075 SLIT/PITCH=0.5 E=50 KeV DETECTOR 3
0.50
025 |
0.0 | | |
-4 -2 0 2 4
Incidence Angle (Units of p/2L)
1.0
075 SLIT/PITCH= 0.4 E=50 KeV DETECTOR 3
050 [
0.25 V\ /\ /\/
0.0 | | :
-4 -2 0 2 4
Incidence Angle (Units of p/2L)
1.0
075 SLIT/PITCH=0.6 E=300 KeV DETECTOR 3
0.50
025 |
0.0 \ ‘ ‘
-4 -2 0 2 4
Incidence Angle (Units of p/2L)
0'75 SLIT/PITCH=0.5 E=300 KeVv DETECTOR 3
0.50
0.25
0.0 \ \ |
-4 -2 0 2 4

Incidence Angle (Units of p/2L)



represented by the following function of 6, the photon’s angle of incidence
relative to the imager axis:

A 1 4 4 4
Striangle(0) = 3 (5 + Fcos(e) + ﬁcos(%) + mcos(w) +--4) (1)

This is precisely the form used by Schnopper et al. (1970) for their observa-
tions of galactic-center with a rocket-borne RMC. But for HESSI, the even
harmonic terms are usually not negligible, and the Fourier coefficients are
not those of a pure triangle waveform, so we must use the more general form:

S(0) = A-(co+c1 cos[@ —61]+co cos(2[0—02]) +c3 cos(3[0—65])+--+) (2)

where cyA is the effective area averaged over 6. In practice, we keep terms
only up to the 5th harmonic. In general, the collimator transmission function
is the convolution of the transmission functions of the front and rear grids. If
the front and rear grids of a subcollimator are geometrically identical (which
is very nearly true for HESSI), this means that the Fourier coefficients of
S(6) are the squares of the transmission functions of a single grid. For the
case of ideal grids of effective slit/pitch ratio q, the Fourier coefficients of
the grid transmission are

gn 1 /‘17r cOS(’nﬂ)dQ = sz'n[mTQ]/(an) n=1,23,- (3)

2m J_gn

So the amplitudes ¢, are:

Cn = 4Sin2[n7rq]/(nﬂ-Q)2 n = 15 27 35 Ut (4)

When g = 1/2, the case of a simple triangle profile (which occurs for HESSI
when 6 = 412"), all the even amplitudes vanish, but for ¢ = 0.4, (photons
at normal incidence on the HESSI grids), ¢, = 0.1093, and for ¢ = 0.6
(equivalent to angular incidence of 824"), ¢, = 0.0486. In general, for real
conditions, the relative amplitudes ¢y, ¢o, - - - and the relative phases 61,65, - - -
are dependent on the grid characteristics, the roll angle, and the angle of
incidence. The latter dependence is sufficiently small and slow that for
sources on the Sun, that they can be considered uniform within a map in
a given time bin. These parameters have been computed from the grid
characterizations, and are included in the HESSI reconstruction algorithms.



2.2 Rotational Modulation

So far we have described the transmission only for one roll angle, namely
the instant at which the pattern projected on the sky from an ensemble
of sight lines from the detectors — the so-called “modulation pattern” —
has contours of constant phase perpendicular to the vector on the plane of
the sky from the source to the projected telescope axis. As the spacecraft
spins, the projected modulation pattern spins with it. To the lowest order
of approximation, if the grids are infinitely wide and infinitely thin, and the
spin axis does not move, the modulation pattern would rotate unchanged.
Since, however, the grids are thick, of finite extent, and the spin axis is not
necessarily constant during a rotation, the projected modulation pattern
changes with roll angle in a predictable way, which is reflected in a slow,
smooth change of the phase and amplitude coefficients of the sub-collimator
pattern.

It is useful to take the telescope as our reference frame, and let a point source
move in a circle (roll angle @« = 0—27) on the celestial sphere around the spin
axis. Then, because no modulation occurs in the y direction parallel to the
slats, and modulation in the x-direction follows equation (2), the effective
pitch changing in proportion to sec(a). During a rotation, the fundamental
coefficients (c1,6;) change least, and the function S is a simple function of
roll angle . For an ideal RMC (idealized grids, steady spin), the argument
0 in equation (2) is proportional to the radial distance R (arcsec) of the
source and inversely proportional to angular pitch p):

6 = 2w Rcos(a)/p (5)

The flux of photons on a HESSI detector from a point source a distance R
off axis is proportional to the effective area, which leads to the modulation
profile as a function of rotation angle a:

Py(a) = A- (14 cicos(2mReos(a)/p — 601) + -+ -) (6)

where p is the angular pitch (arc sec) of the grids in the subcollimator. For
a given map center, the quantities (c;,,8,) are computed from the aspect
system and the grid response matrices, and are returned in the HESSI cal-
ibrated event list. The above function is computable for any time interval
and any point source on the Sun. Therefore, since the the signal expected
for a superposition of sources is the superposition of point source signals,
any model source can be used to predict a modulation profile. This is the
basis for all HESSI reconstruction algorithms.



2.3 The HESSI Event List

The set of photon arrival times taken from the HESSI telemetry can be
histogrammed to yield a raw count rate profile. The HESSI user can select
an almost arbitrary set of time bin sizes {At¢; } for histogramming. (At;
is necessarily > 1 us, and may be as large as ~ 1 s, but is more typically
~ 0.5 ms). After the time bin selection, the count/bin profile becomes a
function of roll angle «, and one can proceed to calibrate the rates.

For phase and amplitude calibration, one must select a phase center for map-
ping. This point can be found in several ways: (a) determine the azimuth
by the roll angle of fastest modulation, and the radius by the number of
modulation cycles per rotation; (b) make a rough map of a large region (say
a solar quadrant) and find the position of the maximum; or (c) use context
data or (d) previous flare position data.

Using the aspect system data, the distance of the line of maximum trans-
mission from map center is computed for each roll angle «; and each sub-
collimator pitch pg. This gives the phase at map center ®;;. (See figure
(??.) For the case of a fixed spin axis, ®;; = 27w Rcos(«;)/pr — 0. But
in practice, ®;; is computed without reference to R, using aspect data and
the subcollimator geometries alone. One must incorporate the dead time,
a function 7;; of roll angle and energy E;, the detector number k, and the
subcollimator transmission T;;, as well as the modulation amplitudes cﬁfk
and modulation phases ®%* to determine the model modulation profile:

Sijk = Fo - {rijeTije[l + Y c¥cos[n(Dyy, — ®F)]} (7)
n

When the HESSI analysis software computes the quantities Tijk,ﬂ}jk,cf{k
and ®¥* they are returned in a structure called the calibrated event list, the
starting point for image reconstruction.

2.4 Visibilities
In radio astronomy, the quantity analogous to the modulation pattern is the
fringe pattern, which is the response of an interferometer to point sources

in the sky. This is the Fourier transform, and it is represented by a sum of
complex exponentials in the u,v plane:

Vi — f eZﬂi(uiz—f—viy) (8)



for each point source of flux f at coordinate (z,y). The variables u;,v;
are the coordinates in the Fourier plane, and for HESSI, u; = cos¢;/p and
v; = sing;/p, so the points (u;,v;) lie on circles in the Fourier plane.

The importance of visibilities to HESSI is that they represent an inter-
mediate between count-rate profiles and images that is independent of the
pointing. The visibilities have all of the spin-axis wobble, slit-shadowing
effects, transmission and deadtime accounted for. Visibilities, unlike count-
rate profiles, can be added from 1/2 rotation to another.

A significant simplification for imaging occurs when one changes from the
usual Cartesian coordinates to polar coordinates in both the image plane
and the Fourier plane:

x = r cosf u = k coso

y = 1 sind v = k sing

Since the visibilities are found on circles in the Fourier plane, the radial
integration drops out (V is proportional to a delta function of radius k),
and after a little algebra, the Fourier transform for one subcollimator of
wavenumber k becomes:

27 . )
F(r,0) =k V(¢)ezkr cos(0—¢)d¢ — kY Q etkr cos(9) 9)
0

The nice thing about this, is that for each radius, F(r,¢) is a convolution
of the visibility and a complex exponential. Since convolutions are orders of
magnitude faster than matrix multiplications, polar coordinate representa-
tions of HESSI data provide a great increase in speed of “backprojection”
(section 3.1) or other reconstructions.

2.5 Count Rates and Visibilities

Given an incident flux of photons on a HESSI subcollimator, after the se-
lection of a map center, the predicted count rate C is given by equation (7)
with subscripts 4, j, k¥ dropped:

C=FyTr7 -{1 + c1 cos[®]+cz cos[2(® — P3)] + ---} (10)

where Fj is the incident photon flux on front grid, T is the subcollimator
transmission, 7 is the livetime, ® is the phase at map center, c, is the
modulation amplitude, and ®,, is the modulation phase. (All these and
subsequent variables are defined in the Appendix.)

10



In general, the phase at map center depends on the results of the aspect so-
lution, the time binning, the subcollimator, and the position of the map cen-
ter. The phase at map center ® depends on the the projection of the vector
between the subcollimator axis (Zco, Yeon) and the map center (Zmap, Ymap):

® = 27{[Zmap — Teou]cOSC + [Ymap — Yeou|sine) /p} (11)
where
(Zcotts Yeo) = Subcollimator direction in inertial coordinates
(Zmaps Ymap) = Map center in inertial coordinates
a = Azimuth angle of slits
p = Pitch of subcollimator grids

In the simplest case, where, the spin axis is at the origin and is stationary,
the phase at map center is a function only of the azimuth ¢, the pitch p,
and the location of the map center (Ry, ¢o):

® = 21 Rycos(¢ — ¢o)/p (12)

But in general, regardless of the position of the spin axis, the predicted
count rate is given by equation (10).
The visibility of a point source at the map center is:

V =F, ei27r[;vmap €0Sa+Ymap Sina)|/p (13)

Note that the visibility does not depend on the subcollimator coordinates
(Zcotts Yeot1), but the count rate is subject to phase shifts caused by telescope
motion. The phase shifts due to this motion are:

AD = 27{z oy cOSQ + Yoo SiNQ) /D (14)

And these are reflected in additional variations of the count rate profile.
(The quantity A® is computed from the aspect solution.) We can separate
out this variation explicitly in the visibility:

V = F el®+A?] (15)

If we subtract out the mean of the count rate (equation 2), and divide out
the T'r factor, keeping only the fundamental term,

(C—Fy T 1)/(T 1c1) = Fy cos® (16)

11



So, for this particular case of a point source at map center the relation
between the countrate profile and the visibilities are found by comparing
equations 15 and 16:

C— FyTT . C—<C>
aTr oTT

Re{Ve 1A%} = (17)

It is important to note that, by equation 17, the peak-to-peak variation of
the visibility is several times larger than the peak-to-peak variation of C.
This is because the visibility reflects the transform of the incident photons,
while the count rate is the modulated profile of only the detected photons.
In fact, when the livetime is unity (7" = 1), and when the subcollimator
pattern is perfectly triangular, (c;7 = 2/7?%), the peak-to-peak variation of
Re{V} is 72/2 = 4.9 times that of the count profile.

For a more general case, where the source is an arbitrary superposition of
N point sources of flux F; and location (Rj, ¢;), the visibility is:

N
V =e2? Z Fj '%i (18)
j=1

where the ®; are the phases of the point sources at (R;, ¢;).
Then, the corresponding predicted count rate is:

N
C=Tr ZF] {1 + c1 cos[®j)] + .-} (19)

Comparing equations 18 and 19, we find that equation 17 remains valid,
providing that Fjy is defined as the total flux of the N sources.

The generalization to higher harmonics is straightforward. The visibility for
the n** harmonic is given by:

. (n)
Re{vWe-iaey - €

eIt (20
where C(™ is the n' term in the Fourier expansion of the count rate (equa-
tion 10). Note that equation (20) determines only a projection of the com-
plex visibility at each instant of time. Since, however, each modulation
cycle contains phase as well as amplitude information, equation (20) can be
used to determine both components for each modulation cycle. Each visi-
bility profile so derived from equation 20 then defines a portion of the entire
Fourier transform obtained on a circle of radius n/p in the Fourier plane.

12



3 Image Reconstruction

3.1 Linear Methods: Backprojection and Fourier Transforms

Back projection (Mertz, Nakano, and Kilner 1986) is the most straightfor-
ward and basic method of image reconstruction. It is equivalent to a Fourier
transform (Kilner and Nakano, 1989.) A map constructed by this method is
called the ”dirty map”, being the analogue of the radio astronomer’s initial
Fourier transform of the observed visibilities. Back projection is a perfectly
linear process: maps for arbitrary time intervals may be added together,
and maps for different pitches and harmonics may be summed, generally
leading to improvement of the image. Further improvements to the image
by CLEAN or MEM (for example) do not share this property of linearity.

The principle of back projection is to consider the quantities S;;; in equation
(7) as circular slices of the two-dimensional modulation patterns P;,,. The
modulation profile (7) may be thought of as the amplitude at an inertial po-
sition of a series of two-dimensional modulation patterns that rotate around
at the same rate as the telescope. The modulation patterns must shift in
phase and amplitude, depending on the relative position of the telescope
axis as a function of roll angle.

The brightness D,, of each pixel (m) in the back-projection map is defined
by the following linear combination of the count rates O;:

Dy =Y OWin, (21)
where the weights W; are linearly related to the modulation patterns Pjy,:
Wim = (Pim— < P >)/(< Py > = < P >%) - Ty, (22)

and the averages < P,,, > and < P2 > are taken over the range of roll angles
«;. This particular normalization of the backprojection weights W; was first
derived by Durouchoux et al (1983). The explanation for the normalization
of the weights W; derives from the fact that the predicted count rate O; for
a point source of strength S at sky position m is:

O; =S Titi P (23)

Inserting the last equation (23) into the equation for the dirty map (21)
shows that the peak of the dirty map equals the strength of the point source,

Dy =S, (24)
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since Y Wi Tim; Py, = 1. Although (24) is strictly true only for a single
source, simulations show that it produces nearly optimum back-projection
maps for more complicated sources.

Figure 3.1 shows an example of a back-projection image for a simulated
double source (Gaussian widths =1 x 1”) and the corresponding countrate
profiles.

Although it is possible to use only one modulation pattern per roll angle
to produce back-projection images, it turns out to be more efficient to con-
struct ”universal” modulation patterns in the form of cosine and sine pairs.
Sinusoidal modulation patterns of arbitrary phase can then be computed by
appropriate linear combinations. This formulation has the advantage that
neighboring half rotations may use the same ”universal” set of patterns,
even if there are different aspect solution profiles.

It is worth mentioning that in early versions of RMC design, there were both
sine and cosine subcollimators (e.g., Mertz et al. 1986), Murphy, 1990),
but this turns out not to be necessary in hardware, since with sufficient
sampling of the modulation pattern, relative amplitudes of the sine and
cosine components can be determined from the modulation profile itself.

Each modulation pattern has contours of constant phase perpendicular to
the roll angle azimuth vector, and has the periods and amplitudes used in
equation (7). The modulation patterns so computed for each angle bin,
are added together with weights given by the count rate divided by the
product of the transmission factors and deadtimes. The sum is the back-
projection map. For HESSI, simulations suggest that summation of the
9-subcollimator back-projection maps gives a dynamic range of order 10:1
for rates ~ 10%counts1s1.

3.2 Nonlinear Reconstruction Methods

All of the practical image reconstruction algorithms for improving a back-
projection (”dirty”) map are nonlinear, since linear deconvolution algo-
rithms such as Wiener filtering and inverse filtering are inapplicable to ap-
plications with incomplete sampling of the Fourier plane, as is the case for
HESSI modulation synthesis. A number of reconstruction methods already
exist, or are being improved, or are being considered for addition to the
HESSI reconstruction suite. We summarize several of these here.
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3.2.1 CLEAN (Cartesian, Polar)

CLEAN is an iterative algorithm which deconvolves a Point Spread Function—
the imager’s response to a delta function source—from a “dirty map”. This
algorithm is of fundamental importance in radio astronomy, where it is
used to create images of astronomical sources obtained with interferome-
ters. The basic CLEAN method was developed by Hogbom (1974). It was
originally designed for point sources, but it has been found to work well
for extended sources as well when given a reasonable starting model. The
Hogbom CLEAN constructs discrete approximations to the CLEAN Map in
the plane from the convolution equation

P® Isource =D (25)

where P is the HESSI PSF for one or many subcollimators and /or harmonics,
D is the dirty map, and ® denotes a convolution. The CLEAN algorithm
starts with an initial approximation Iy = 0 to the residual map. At the
n'® iteration, it then searches for the largest value in the residual map. A
delta function is then centered at the location of the largest residual flux
and given an amplitude y (the so-called “loop gain”) times this value. P is
then subtracted from I, 1 to yield I,,.

In=1,1 — puP (26)

Iteration continues until a specified iteration limit is reached, or until the
peak residual or RMS residual decreases to some level. The resulting final
map is denoted If;nq, and the position of each delta function is saved in
a “CLEAN component” table. At the point where component subtraction
is stopped, it is assumed that the residual brightness distribution consists
mainly of noise.

To damp out high spatial frequency features which may be spuriously cre-
ated in the iteration, each CLEAN component is convolved with the so-called
CLEAN PSF, P can (the “CLEAN beam” in radioastronomy), which is sim-
ply a suitably smoothed version or inner portion of the PSF, P. A CLEAN
map is produced when the final residual map is added to the approximate
solution,

Iclean = If'inal ® Pclean + {D -P® Ifinal} (27)

in order to include the noise.
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The main disadvantage of CLEAN is that it does not, at least in the Hogbom
version, compare the observed modulation profile with a model modulation
profile, to assess the “goodness of fit” during the iteration. Two variants of
CLEAN exist for HESSI. One is for rectangular coordinates, and the other
is for polar coordinates. In most circumstances, the latter has a significant
advantage of speed over the former.

Figure 7?7 shows an example simulated source, the “dirty map”, the “CLEAN
map”, and the residuals.

3.2.2 Maximum Entropy Methods (MEM Sato, Polar MEM)

The principle of Maximum Entropy is to find the map which is maximally
noncommittal with regard to the unavailable information (i.e. the regions
of the Fourier plane for which HESST has no data). The image found is that
which fits the data to within the noise level and also maximizes the entropy.
In one view, the entropy is something which, when maximized, produces a
positive image with a compressed range in pixel values. (Cornwell 1984)
Image entropy thus defined is therefore not to be confused with a “physical
entropy”. Several kinds of ”"entropy” have been proposed to achieve this,
but according to Skilling (1984) and Sivia (1996) the only function which
guarantees that no untoward correlation is imposed is:

M
H == fjin(fy) (28)
j=1

The idea is to maximize the objective function Q:

M
Q=H-2x-8)f (29)
1

for some values of A\, where ) is a parameter giving a measure of the tug-of-
war between maximizing entropy and minimizing the x? statistic and £ is a
Lagrange parameter multiplying the flux constraint. At maximum,

fi = B el (30)
One may solve the equations (11) iteratively or by directed search of Q.

One of the HESSI MEM reconstruction algorithms is MEM_Sato, derived
from the Maximum Entropy Method used for HXT imaging (Sato, 1998,
Sato, Kosugi, and Makishima, 1999).
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MODEL SOURCE DIRTY MAP

MEM MAP RESIDUALS

Figure 3.2.2 shows an example simulated source, its count profile, the “MEM
map”, and the residuals.

3.2.3 Forward Fitting (pixelized, non-pixelized)

The forward-fitting method is based on models that represent a spatial map
by a superposition of multiple source structures, which are quantified by
circular Gaussians (4 parameters per source), elliptical Gaussians (6 param-
eters per source), or curved ellipticals (7 parameters), designed to character-
ize real solar flare hard X-ray maps with a minimum number of geometric
elements.
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In one realization of this scheme, maps of superimposed Gaussians are cre-
ated iteratively, at each step constructing a model modulation profile from
the map. In this “pixelized” form, the map evolves into a best fitting image.
A second form of forward-fitting is the unpixelized version, where the param-
eters of the Gaussians are used to find the “equivalent point source”, which
is equivalent to an amplitude and phase at each roll angle. The “equiva-
lent point source” is then used to create the model modulation profile for
comparison with the observed count profile and continued iteration. The
unpixelized form requires at least an order of magnitude less memory and
computation than the pixelized form, but the programs are more complex
and their robustness is as yet unknown.

3.2.4 The PIXON Method

The PIXON method is another technique removes the sidelobe pattern of
a telescope while mitigating the problems of correlated residuals and spuri-
ous sources which are commonly seen in Fourier deconvolution, chi-square
fitting, and Maximum Entropy approaches.

The goal of the Pixon method is to construct the simplest, i.e. smoothest,
model for the image that would be consistent with the data, i.e. have an ac-
ceptable chi-square fit. Being the simplest model, the derived image would
be artifact free, i.e. there would be no spurious sources. In addition, the
model is necessarily be most tightly constrained by the data, and conse-
quently have the most accurately determined parameters.

The PIXON method changes the global smoothness idea of MEM into a lo-
cal condition in which local maximum smoothness of the image is imposed.
From an information science point of view, one selects a model with the min-
imum information content from the family of multiresolution basis functions
(pixons) and which statistically fit the data.

Since the model has minimum complexity, spurious sources are unlikely to
arise. Each parameter is determined using a larger fraction of the data,
hence it is determined more accurately. This usually results in superior
photometric and positional accuracy. And since the minimum number of
parameters are used, the data cannot be over fitted.

Figure 3.2.1 shows an example simulated source, its count profile, the “PIXON
map”, and the residuals.
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3.3 Undeveloped Techniques

The available HESSI reconstruction algorithms in no way span the universe
of techniques. A few of the likely methods to be added to the existing suite
of programs are outlined here.

3.3.1 Wavelets

HESSI has pitches at multiplicative intervals of v/3, and so, in a way it is
a wavelet telescope, where the wavelet scales are logarithmically spaced by
V3. To date, no one has exploited wavelet mathematics for HESSI imaging.

3.3.2 Non-Negative Least Squares

A promising technique used for medical imaging (ref) is Non-Negative Least
Squares (NNLS). In general, linear Least Squares is not expected to be useful
for HESSI, but the enforcement of positivity in NNLS provides an essential
nonlinear constraint that may lead to good images in the HESSI parameter
domain.

3.3.3 Two-Dimensional Autocorrelation

Mertz (1996) has suggested an autocorrelation technique for imaging with
RMCs. It has the desirable properties of positivity and smaller sidelobes and
shows promise for fast mapping of single sources. However, as Mertz points
out, difficulties in processing complex sources seem to limit its applicability.
It may, however, be useful for centroid finding before final reconstruction.

4 Statistical Limits

Since HESSI is a photon-counting instrument, imaging involves stochastic
processes. During the time during which the data for an image are acquired,
the incident photon rate A may be considered a constant. The number of
photons per time bin is given by Poisson statistics, where the probability
density function ppe(A) is the expected number of photons per time bin
incident on the front grid. The process of modulation is also stochastic,
since the incident phase relative to the collimator fringes is random, and
the probability of a photon detection is proportional to the function (7)
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normalized to unity at its maximum. The counts per bin is therefore given
by the product of these two probabilities:

Ci = ppoi(A) Shorm (31)

This is the ansatz used for simulations of HESSI count rate profiles (Schmahl,
1998). Examination of equation (7) for S;;; shows that if its Fourier expan-
sion is truncated at the fundamental (as is often very useful), there are
situations when S can go negative. This is not really a problem for backpro-
jection or for Fourier mapping, neither of which depend on positivity. But
it is of importance for CLEAN, MEM, and Pixons. Of singular importance,
if it is negative, the normalized version (Syorm,) of equation (7) fails to have
any meaning as a probability.

4.1 Fourier Coefficient Distribution

The problem arises due to an expectation that S;;; should represent a count
rate. If, however, the Fourier coefficients are considered as primary elements,
then the statistics can be done with them, regardless of their number and
whether they produce a negative sum.

Let us consider the fundamental only. After choosing a map center, at
any given rotation angle, one can use the calibrated phase at map center to
determine the angular length of each modulation cycle. For the fundamental,
the Fourier coefficients can be computed from 4 angular bins, assumed to be
equally spaced within one cycle. Let these bins have counts {sg, s1, 2, 3}
Then the DC, cosine and sine coeffcients, derived either by the method of
least squares or Fourier analysis, may be written as:

co = [so + s1 + sa + s3]/4 (32)
a;, = [80 - 52]/2 (33)
b1 = [31 — 33]/2 (34)

Then, since 02> = X for Poisson statistics, the standard deviation for the
DC coefficient is, as expected, og = v/A/2. Given a value for ¢y (the mean
cycle flux), the allowed range of a; and by, due to the nonnegativity of the
countrates, is —k/2 to k/2, where k is the number of photons in the cycle.
The standard deviations for the sine and cosine coefficients a; and b; are

0'0/\/5.

23



A similar analysis can be done for the higher harmonics (n > 1), where
of course it is necessary to have n bins per fundamental cycle for adequate
sampling.

4.2 Regularization

When the count rates are low, the time bins will contain very small numbers
of photons, perhaps all ones and zeroes, particularly for the finest subcolli-
mators, where the time bins must be small enough to resolve the modulation
cycles. Even though the modulation cycles may not be apparent to the eye,
use can be made of the process called “regularization” to average cycles in
phase. The binning that regularizes the modulation profile is found by (1)
sorting the map-center phase so that it is increasing in time, (2) assigning
cycle boundaries whereever the phase is a multiple of 27, (3) dividing each
cycle into 4 bins, and (4) taking the mean count rate in each bin. This
process is illustrated in Figure 4.2

After regularization, one may make in-phase averages of the modulation
profile with successively smaller “super bins”. Starting with ~ 1/4 the
rotation period, one tests ¢y — co and ¢; — c3 for significance, then steps
down to smaller superbins, testing at each level until one reaches the lowest
timescale limited by counting statistics. Each of the differences so produced
gives a Fourier representation of the amplitude and phase of the modulation
profile for use in modeling (e.g. Forward Fitting) the source.

It follows logically from the above scheme that data from the finer grids
contain as much information about point sources as the coarser grids, re-
gardless of the count rate (provided only that the grid transparancies are
the same). This can also be seen by the following argument. Given one
subcollimator of angular pitch p,, (n = 1 —9), the modulation profile of
two point sources separated by a distance Az = p, = 4.3" x \/(3)"~! shows
slow (At ~ 1 s) amplitude modulation caused by “beating” of the sources.
During one half rotation, the amplitude has maxima at angles where the
modulation is fastest (i.e. where the phase at map center is near zero), and
minima at angles where the modulation is slowest (i.e. where the phase
at map center is near maximum). By simple geometrical scaling of both
the instrument and the source geometry, this statement is true for all p,.
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That is, for the finest subcollimator, two point sources 4.3" apart produce
the same amplitude modulation as two point sources 4.3 x 3* = 348" apart
would produce for the coarsest subcollimator. Extraction of the imaging
information for the finest grids is done automatically by the backprojection,
FT, CLEAN and MEM algorithms, so that even if counts/timebin are of the
order of unity and modulation is not apparent to the eye, the algorithms
make use of the information contained in the data. For Forward Fitting, the
regularization scheme described above seems to be necessary. ---

5 Figure Captions

Figure 1.1

Schematic geometry of the HESSI subcollimators, showing represen-
tative incidence of photons with respect to the collimator axis.

Figure 2.1

Profiles of the equivalent area function for various slit/pitch ratios,
and also showing energy-dependent effects that smooth the corners of
the profile.

Figure 77 Diagram showing the relative positions of the spacecraft
coordinates, heliocentric coordinates and the mapped region. Note
that the spacecraft rotates clockwise as viewed against the Sun (i.e.
« increases with time). The projected distance © from the line of
subcollimator peak response to the map center is the phase at map
center used in the calibrated event list.

Figure 3.1

An example of a back-projection image for a simulated source and the
corresponding countrate profile.

Figure 3.2.1

An example simulated source, its count profile, the “dirty map”, the
“CLEAN map”, and the corresponding count profile derived from the
CLEAN map.
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Figure 3.2.2

An example simulated source, its count profile, the “MEM map”, and
the corresponding count profile derived from the MEM map.

Figure 3.2.4

An example simulated source, its count profile, the “PIXON map”,

and the corresponding count profile derived from the PIXON map.

Figure 4.2 The binning that regularizes the modulation profile.
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6 Appendix

p/(2L)
St'riangle
0

Cn
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Incident photon flux on front grid
Subcollimator transmission

Livetime

Phase at map center

Modulation Amplitude, n =1,2,3,4,5
Modulation Phase, n=1,2,3,4,5
angular pitch

separation between grids

angular resolution

effective subcollimator area for ideal thin grids
the photon’s angle of incidence relative to the imageraxis
modulation amplitude for harmonic n
modulation phases for harmonic n

Fourier coefficients of the grid transmission
effective slit/pitch ratio

relative phases for harmonic n

roll angle

modulation profile

time binsizes

phase at map center

dead time

subcollimator transmission

energy

coordinates in the Fourier plane

azimuthal coordinate in the Fourier plane

radial coordinate in the Fourier plane
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visibility

predicted count rate

subcollimator axis

map center

location of the map center

phase shift from telescope axis to sun center

two — dimensional modulation patterns
brightness of pixel m in the back — projection map
predicted count rate in bin i

HESSI Point Spread Function

the loop gain in CLEAN

residual map intensity at nth iteration of CLEAN
Entropy

parameter in MEM

Poisson variate

probability of a photon detection

cosine and sine Fourier coeffcients
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